上一篇文章我们介绍了 Bokeh,接下来让我们继续我们列表的第四个库。这是我们列表中的最后一个库,您可能想知道为什么用Plotly。以下就是它的优点——
- Potly 具有悬停工具功能,使我们能够检测众多数据点中的任何异常值或异常情况。
- 它允许更多的定制。
- 它使图形在视觉上更具吸引力。
安装
要安装它,请在终端中输入以下命令。
pip install plotly
复制代码
散点图
散点图中Plotly可以使用被创建scatter()
plotly.express的方法。和 Seaborn 一样,这里也需要一个额外的数据参数。
例子:
import plotly.express as px
import pandas as pd
# 读取数据库
data = pd.read_csv("tips.csv")
# 绘制散点图
fig = px.scatter(data, x="day", y="tip", color='sex')
# 显示plot
fig.show()
复制代码
输出:
折线图
Plotly 中的折线图看起来比较直观,并且是 plotly 的杰出合并,它管理各种类型的数据并组装易于样式的统计数据。使用px.line 将每个数据位置表示为一个顶点
例子:
import plotly.express as px
import pandas as pd
# 读取数据库
data = pd.read_csv("tips.csv")
# 绘制散点图
fig = px.line(data, y='tip', color='sex')
# 显示plot
fig.show()
复制代码
条形图
Plotly 中的条形图可以使用 plotly.express 类的 bar() 方法创建。
例子:
import plotly.express as px
import pandas as pd
# 读取数据库
data = pd.read_csv("tips.csv")
# 绘制散点图
fig = px.bar(data, x='day', y='tip', color='sex')
# 显示情节
fig.show()
复制代码
输出:
直方图
在plotly,直方图可以使用plotly.express类的histogram()函数创建。
例子:
import plotly.express as px
import pandas as pd
# 读取数据库
data = pd.read_csv("tips.csv")
# 绘制散点图
fig = px.histogram(data, x='total_bill', color='sex')
# 显示 plot
fig.show()
复制代码
输出:
添加交互
就像 Bokeh 一样,plotly 也提供了各种交互。让我们讨论其中的几个。
创建下拉菜单:下拉菜单是菜单按钮的一部分,始终显示在屏幕上。每个菜单按钮都与一个菜单小部件相关联,该小部件可以在单击该菜单按钮时显示该菜单按钮的选项。在 plotly 中,有 4 种可能的方法可以使用 updatemenu 方法来修改图表。
- restyle: 修改数据或数据属性
- relayout: 修改布局属性
- update: 修改数据和布局属性
- animate: 开始或暂停动画
例子:
import plotly.graph_objects as px
import pandas as pd
# 读取数据库
data = pd.read_csv("tips.csv")
plot = px.Figure(data=[px.Scatter(
x=data['day'],
y=data['tip'],
mode='markers',)
])
# 添加下拉菜单
plot.update_layout(
updatemenus=[
dict(
buttons=list([
dict(
args=["type", "scatter"],
label="Scatter Plot",
method="restyle"
),
dict(
args=["type", "bar"],
label="Bar Chart",
method="restyle"
)
]),
direction="down",
),
]
)
plot.show()
复制代码
输出:
添加按钮: 在 plotly 中,动作自定义按钮用于直接从记录中快速制作动作。自定义按钮可以添加到 CRM、营销和自定义应用程序中的页面布局。还有 4 种可能的方法可以应用于自定义按钮:
- restyle: 修改数据或数据属性
- relayout: 修改布局属性
- update: 修改数据和布局属性
- animate: 开始或暂停动画
例子:
import plotly.graph_objects as px
import pandas as pd
# 读取数据库
data = pd.read_csv("tips.csv")
plot = px.Figure(data=[px.Scatter(
x=data['day'],
y=data['tip'],
mode='markers',)
])
# 添加下拉菜单
plot.update_layout(
updatemenus=[
dict(
type="buttons",
direction="left",
buttons=list([
dict(
args=["type", "scatter"],
label="Scatter Plot",
method="restyle"
),
dict(
args=["type", "bar"],
label="Bar Chart",
method="restyle"
)
]),
),
]
)
plot.show()
复制代码
输出:
创建滑块和选择器:
在 plotly 中,范围滑块是一个自定义范围类型的输入控件。它允许在指定的最小和最大范围之间选择一个值或一个值范围。范围选择器是一种用于选择要在图表中显示的范围的工具。它提供了用于在图表中选择预配置范围的按钮。它还提供了输入框,可以手动输入最小和最大日期
例子:
import plotly.graph_objects as px
import pandas as pd
# 读取数据库
data = pd.read_csv("tips.csv")
plot = px.Figure(data=[px.Scatter(
y=data['tip'],
mode='lines',)
])
plot.update_layout(
xaxis=dict(
rangeselector=dict(
buttons=list([
dict(count=1,
step="day",
stepmode="backward"),
])
),
rangeslider=dict(
visible=True
),
)
)
plot.show()
复制代码
输出:
小结
在本系列教程中,我们借助 Python 的四个不同绘图模块(即 Matplotlib、Seaborn、Bokeh 和 Plotly)绘制了tips 数据集。每个模块都以自己独特的方式显示情节,每个模块都有自己的一组功能,例如 Matplotlib 提供了更大的灵活性,但代价是编写更多代码,而 Seaborn 作为一种高级语言提供了允许人们通过少量代码。每个模块都可以根据我们想要完成的任务使用。