许多算法可以完成这个任务,Knuth-Morris-Pratt算法(简称KMP)是最常用的之一。它以三个发明者命名,起头的那个K就是著名科学家Donald Knuth。

字符串匹配_kmp算法_搜索

首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。

字符串匹配_kmp算法_字符串_02

因为B与A不匹配,搜索词再往后移。

字符串匹配_kmp算法_后缀_03

就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。

字符串匹配_kmp算法_后缀_04

接着比较字符串和搜索词的下一个字符,还是相同。

字符串匹配_kmp算法_搜索_05

直到字符串有一个字符,与搜索词对应的字符不相同为止。

字符串匹配_kmp算法_搜索_06

这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重比一遍。

字符串匹配_kmp算法_字符串_07

一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。

字符串匹配_kmp算法_字符串_08

这里的部分匹配值是通过搜索词的前缀和后缀的最大公共数得到的。

以"ABCDABD"为例

"A"的前缀和后缀都为空集,共有元素的长度为0;

"AB"的前缀为[A],后缀为[B],共有元素的长度为0;

"ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;

"ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;

“ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A”,长度为1;

“ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB”,长度为2;

"ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。

字符串匹配_kmp算法_搜索_09

已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:

移动位数 = 已匹配的字符数 - 对应的部分匹配值

因为 6 - 2 等于4,所以将搜索词向后移动4位。

10.

字符串匹配_kmp算法_搜索_10

因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2(“AB”),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移2位

字符串匹配_kmp算法_搜索_11

因为空格与A不匹配,继续后移一位。

字符串匹配_kmp算法_字符串_12

逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动4位。

字符串匹配_kmp算法_搜索_13

逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动7位,这里就不再重复了。

字符串匹配_kmp算法_后缀_14