本片博文博主为大家讲解MapReduce之Join的多种应用。
目录
一. Reduce Join
1.1 Reduce Join 工作原理
Map端的主要工作:为来自不同表或文件的key/value对,打标签以区别不同来源的记录。然后用连接字段作为key,其余部分和新加的标志作为val,最后进行输出。
Reduce端的主要工作:在Reduce端以连接字段作为key的分组已经完成,我们只需要在每一个分组当中将那些来源于不同文件的记录(在Mao阶段已经打标志)分开,最后进行合并就ok了。
1.2 Reduce Join 案例
1. 需求
将商品信息表中数据根据商品pid合并到订单数据表中。
最终形式如下表:
id | pname | amount |
1001 | 小米 | 1 |
1004 | 小米 | 4 |
1002 | 华为 | 2 |
1005 | 华为 | 5 |
1003 | 格力 | 3 |
1006 | 格力 | 6 |
2. 需求分析
通过将关联条件作为Map输出的key,将两表满足Join条件的数据并携带数据所来源的文件信息,发往同一个ReduceTask,在Reduce中进行数据的串联,如下图所示。
3. 完成代码
- 1. 创建商品和订合并后的OrderBean类
package com.buwenbuhuo.reducejoin;
import org.apache.hadoop.io.WritableComparable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
/**
* @author 卜温不火
* @create 2020-04-25 17:24
* com.buwenbuhuo.reducejoin - the name of the target package where the new class or interface will be created.
* mapreduce0422 - the name of the current project.
*/
public class OrderBean implements WritableComparable<OrderBean> {
private String id;
private String pid;
private int amount;
private String pname;
public String toString() {
return id + "\t" + pname + "\t" + amount;
}
public String getId() {
return id;
}
public void setId(String id) {
this.id = id;
}
public String getPid() {
return pid;
}
public void setPid(String pid) {
this.pid = pid;
}
public int getAmount() {
return amount;
}
public void setAmount(int amount) {
this.amount = amount;
}
public String getPname() {
return pname;
}
public void setPname(String pname) {
this.pname = pname;
}
public int compareTo(OrderBean o) {
int compare = this.pid.compareTo(o.pid);
if (compare == 0) {
return o.pname.compareTo(this.pname);
} else {
return compare;
}
}
public void write(DataOutput out) throws IOException {
out.writeUTF(id);
out.writeUTF(pid);
out.writeInt(amount);
out.writeUTF(pname);
}
public void readFields(DataInput in) throws IOException {
this.id = in.readUTF();
this.pid = in.readUTF();
this.amount = in.readInt();
this.pname = in.readUTF();
}
}
- 2. 编写RJMapper类
package com.buwenbuhuo.reducejoin;
import com.buwenbuhuo.reducejoin.OrderBean;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import java.io.IOException;
/**
* @author 卜温不火
* @create 2020-04-25 17:24
* com.buwenbuhuo.reducejoin - the name of the target package where the new class or interface will be created.
* mapreduce0422 - the name of the current project.
*/
public class RJMapper extends Mapper<LongWritable, Text, OrderBean, NullWritable> {
private OrderBean orderBean = new OrderBean();
private String filename;
protected void setup(Context context) throws IOException, InterruptedException {
FileSplit fs = (FileSplit) context.getInputSplit();
filename = fs.getPath().getName();
}
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] fields = value.toString().split("\t");
if (filename.equals("order.txt")) {
orderBean.setId(fields[0]);
orderBean.setPid(fields[1]);
orderBean.setAmount(Integer.parseInt(fields[2]));
orderBean.setPname("");
} else {
orderBean.setPid(fields[0]);
orderBean.setPname(fields[1]);
orderBean.setId("");
orderBean.setAmount(0);
}
context.write(orderBean, NullWritable.get());
}
}
- 3. 编写RJReducer类
package com.buwenbuhuo.reducejoin;
import com.buwenbuhuo.reducejoin.OrderBean;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
import java.util.Iterator;
/**
* @author 卜温不火
* @create 2020-04-25 17:24
* com.buwenbuhuo.reducejoin - the name of the target package where the new class or interface will be created.
* mapreduce0422 - the name of the current project.
*/
public class RJReducer extends Reducer<OrderBean, NullWritable, OrderBean, NullWritable> {
protected void reduce(OrderBean key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {
//拿到迭代器
Iterator<NullWritable> iterator = values.iterator();
//数据指针下移,获取第一个OrderBean
iterator.next();
//从第一个OrderBean中取出品牌名称
String pname = key.getPname();
//遍历剩下的OrderBean,设置品牌名称并写出
while (iterator.hasNext()) {
iterator.next();
key.setPname(pname);
context.write(key, NullWritable.get());
}
}
}
- 4. 编写 RJComparator类(构造器)
package com.buwenbuhuo.reducejoin;
import com.buwenbuhuo.reducejoin.OrderBean;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
/**
* @author 卜温不火
* @create 2020-04-25 17:24
* com.buwenbuhuo.reducejoin - the name of the target package where the new class or interface will be created.
* mapreduce0422 - the name of the current project.
*/
public class RJComparator extends WritableComparator {
protected RJComparator() {
super(OrderBean.class, true);
}
public int compare(WritableComparable a, WritableComparable b) {
OrderBean oa = (OrderBean) a;
OrderBean ob = (OrderBean) b;
return oa.getPid().compareTo(ob.getPid());
}
}
- 5. 编写RJDriver类
package com.buwenbuhuo.reducejoin;
import com.buwenbuhuo.reducejoin.OrderBean;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
/**
* @author 卜温不火
* @create 2020-04-25 17:24
* com.buwenbuhuo.reducejoin - the name of the target package where the new class or interface will be created.
* mapreduce0422 - the name of the current project.
*/
public class RJDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Job job = Job.getInstance(new Configuration());
job.setJarByClass(RJDriver.class);
job.setMapperClass(RJMapper.class);
job.setReducerClass(RJReducer.class);
job.setMapOutputKeyClass(OrderBean.class);
job.setMapOutputValueClass(NullWritable.class);
job.setOutputKeyClass(OrderBean.class);
job.setOutputValueClass(NullWritable.class);
job.setGroupingComparatorClass(RJComparator.class);
FileInputFormat.setInputPaths(job, new Path("d:\\input"));
FileOutputFormat.setOutputPath(job, new Path("d:\\output"));
boolean b = job.waitForCompletion(true);
System.exit(b ? 0 : 1);
}
}
4. 查看运行结果
- 1. 运行
- 2. 结果
结果正确,说明我们的reducer端的join算法算是成功实现了!!!
二. Map Join
2.1 使用场景
Map Join适用于一张表十分小、一张表很大的场景。
2.2 优点
思考:在Reduce端处理过多的表,非常容易产生数据倾斜。怎么办?
在Map端缓存多张表,提前处理业务逻辑,这样增加Map端业务,减少Reduce端数据的压力,尽可能的减少数据倾斜。
2.3 具体办法:采用DistributedCache
- (1)在Mapper的setup阶段,将文件读取到缓存集合中。
- (2)在驱动函数中加载缓存。
// 缓存普通文件到Task运行节点。
job.addCacheFile(new URI("file://d:/cache/pd.txt"));
2.4 Map Join案例
1. 需求
将商品信息表中数据根据商品pid合并到订单数据表中。
id | pname | amount |
1001 | 小米 | 1 |
1004 | 小米 | 4 |
1002 | 华为 | 2 |
1005 | 华为 | 5 |
1003 | 格力 | 3 |
1006 | 格力 | 6 |
2. 需求分析
MapJoin适用于关联表中有小表的情形。
3. 代码实现
- 1. 创建MJMapper类
package com.buwenbuhuo.mapjoin;
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
import java.net.URI;
import java.util.HashMap;
import java.util.Map;
/**
* @author 卜温不火
* @create 2020-04-25 17:54
* com.buwenbuhuo.mapjoin - the name of the target package where the new class or interface will be created.
* mapreduce0422 - the name of the current project.
*/
public class MJMapper extends Mapper<LongWritable, Text, Text, NullWritable> {
private Map<String, String> pMap = new HashMap<>();
private Text k = new Text();
protected void setup(Context context) throws IOException, InterruptedException {
URI[] cacheFiles = context.getCacheFiles();
String path = cacheFiles[0].getPath().toString();
FileSystem fileSystem = FileSystem.get(context.getConfiguration());
FSDataInputStream bufferedReader = fileSystem.open(new Path(path));
String line;
while (StringUtils.isNotEmpty(line = bufferedReader.readLine())) {
String[] fields = line.split("\t");
pMap.put(fields[0], fields[1]);
}
IOUtils.closeStream(bufferedReader);
}
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] fields = value.toString().split("\t");
String pname = pMap.get(fields[1]);
if (pname == null) {
pname = "NULL";
}
k.set(fields[0] + "\t" + pname + "\t" + fields[2]);
context.write(k, NullWritable.get());
}
}
- 2. 创建MJDriver类
package com.buwenbuhuo.mapjoin;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
import java.net.URI;
/**
* @author 卜温不火
* @create 2020-04-25 17:54
* com.buwenbuhuo.mapjoin - the name of the target package where the new class or interface will be created.
* mapreduce0422 - the name of the current project.
*/
public class MJDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Job job = Job.getInstance(new Configuration());
job.setJarByClass(MJDriver.class);
job.setMapperClass(MJMapper.class);
job.setNumReduceTasks(0);
job.addCacheFile(URI.create("file:///d:/input/pd.txt"));
FileInputFormat.setInputPaths(job, new Path("d:\\input\\order.txt"));
FileOutputFormat.setOutputPath(job, new Path("d:\\output"));
boolean b = job.waitForCompletion(true);
System.exit(b ? 0 : 1);
}
}
4. 运行及查看结果
- 1. 运行
- 2. 查看结果
结果正确,说明我们的map端的join算法算是成功实现了!!!
那么本次的分享就到这里了,后续小菌还会为大家带来更多Hadoop的内容,喜欢的朋友们不要忘了关注博主哦。