ML之RF&XGBoost:基于RF/XGBoost(均+5f-CrVa)算法对Titanic(泰坦尼克号)数据集进行二分类预测(乘客是否生还)


目录

​输出结果​

​比赛结果​

​设计思路​

​核心代码​





输出结果

ML之RF&XGBoost:基于RF/XGBoost(均+5f-CrVa)算法对Titanic(泰坦尼克号)数据集进行二分类预测(乘客是否生还)_ideML之RF&XGBoost:基于RF/XGBoost(均+5f-CrVa)算法对Titanic(泰坦尼克号)数据集进行二分类预测(乘客是否生还)_sed_02ML之RF&XGBoost:基于RF/XGBoost(均+5f-CrVa)算法对Titanic(泰坦尼克号)数据集进行二分类预测(乘客是否生还)_sed_03ML之RF&XGBoost:基于RF/XGBoost(均+5f-CrVa)算法对Titanic(泰坦尼克号)数据集进行二分类预测(乘客是否生还)_bootstrap_04

ML之RF&XGBoost:基于RF/XGBoost(均+5f-CrVa)算法对Titanic(泰坦尼克号)数据集进行二分类预测(乘客是否生还)_ide_05ML之RF&XGBoost:基于RF/XGBoost(均+5f-CrVa)算法对Titanic(泰坦尼克号)数据集进行二分类预测(乘客是否生还)_ide_06

ML之RF&XGBoost:基于RF/XGBoost(均+5f-CrVa)算法对Titanic(泰坦尼克号)数据集进行二分类预测(乘客是否生还)_sed_07

ML之RF&XGBoost:基于RF/XGBoost(均+5f-CrVa)算法对Titanic(泰坦尼克号)数据集进行二分类预测(乘客是否生还)_ide_08

ML之RF&XGBoost:基于RF/XGBoost(均+5f-CrVa)算法对Titanic(泰坦尼克号)数据集进行二分类预测(乘客是否生还)_sed_09

ML之RF&XGBoost:基于RF/XGBoost(均+5f-CrVa)算法对Titanic(泰坦尼克号)数据集进行二分类预测(乘客是否生还)_bootstrap_10

ML之RF&XGBoost:基于RF/XGBoost(均+5f-CrVa)算法对Titanic(泰坦尼克号)数据集进行二分类预测(乘客是否生还)_bootstrap_11ML之RF&XGBoost:基于RF/XGBoost(均+5f-CrVa)算法对Titanic(泰坦尼克号)数据集进行二分类预测(乘客是否生还)_bootstrap_12ML之RF&XGBoost:基于RF/XGBoost(均+5f-CrVa)算法对Titanic(泰坦尼克号)数据集进行二分类预测(乘客是否生还)_bootstrap_13

ML之RF&XGBoost:基于RF/XGBoost(均+5f-CrVa)算法对Titanic(泰坦尼克号)数据集进行二分类预测(乘客是否生还)_sed_14

ML之RF&XGBoost:基于RF/XGBoost(均+5f-CrVa)算法对Titanic(泰坦尼克号)数据集进行二分类预测(乘客是否生还)_bootstrap_15

ML之RF&XGBoost:基于RF/XGBoost(均+5f-CrVa)算法对Titanic(泰坦尼克号)数据集进行二分类预测(乘客是否生还)_sed_16

比赛结果

ML之RF&XGBoost:基于RF/XGBoost(均+5f-CrVa)算法对Titanic(泰坦尼克号)数据集进行二分类预测(乘客是否生还)_bootstrap_17




设计思路

ML之RF&XGBoost:基于RF/XGBoost(均+5f-CrVa)算法对Titanic(泰坦尼克号)数据集进行二分类预测(乘客是否生还)_ide_18




核心代码

rfc = RandomForestClassifier()          
rfc_cross_val_score=cross_val_score(rfc, X_train, y_train, cv=5).mean()
print('RF:',rfc_cross_val_score)

rfc.fit(X_train,y_train)
rfc_y_predict = rfc.predict(X_test)
rfc_submission = pd.DataFrame({'PassengerId': test['PassengerId'], 'Survived': rfc_y_predict})
rfc_submission.to_csv('data_input/Titanic Data/Titanic_rfc_submission.csv', index=False)



xgbc = XGBClassifier()
xgbc_cross_val_score=cross_val_score(xgbc, X_train, y_train, cv=5).mean()
print('XGBoost:',xgbc_cross_val_score)

xgbc.fit(X_train, y_train)
xgbc_y_predict = xgbc.predict(X_test)
xgbc_submission = pd.DataFrame({'PassengerId': test['PassengerId'], 'Survived': xgbc_y_predict})
xgbc_submission.to_csv('data_input/Titanic Data/Titanic_xgbc_submission.csv', index=False)
class RandomForestClassifier(ForestClassifier):
"""A random forest classifier.

A random forest is a meta estimator that fits a number of decision tree
classifiers on various sub-samples of the dataset and use averaging to
improve the predictive accuracy and control over-fitting.
The sub-sample size is always the same as the original
input sample size but the samples are drawn with replacement if
`bootstrap=True` (default).

Read more in the :ref:`User Guide <forest>`.

Parameters
----------
n_estimators : integer, optional (default=10)
The number of trees in the forest.

criterion : string, optional (default="gini")
The function to measure the quality of a split. Supported criteria are
"gini" for the Gini impurity and "entropy" for the information gain.
Note: this parameter is tree-specific.

max_features : int, float, string or None, optional (default="auto")
The number of features to consider when looking for the best split:

- If int, then consider `max_features` features at each split.
- If float, then `max_features` is a percentage and
`int(max_features * n_features)` features are considered at each
split.
- If "auto", then `max_features=sqrt(n_features)`.
- If "sqrt", then `max_features=sqrt(n_features)` (same as "auto").
- If "log2", then `max_features=log2(n_features)`.
- If None, then `max_features=n_features`.

Note: the search for a split does not stop until at least one
valid partition of the node samples is found, even if it requires to
effectively inspect more than ``max_features`` features.

max_depth : integer or None, optional (default=None)
The maximum depth of the tree. If None, then nodes are expanded
until
all leaves are pure or until all leaves contain less than
min_samples_split samples.

min_samples_split : int, float, optional (default=2)
The minimum number of samples required to split an internal node:

- If int, then consider `min_samples_split` as the minimum number.
- If float, then `min_samples_split` is a percentage and
`ceil(min_samples_split * n_samples)` are the minimum
number of samples for each split.

.. versionchanged:: 0.18
Added float values for percentages.

min_samples_leaf : int, float, optional (default=1)
The minimum number of samples required to be at a leaf node:

- If int, then consider `min_samples_leaf` as the minimum number.
- If float, then `min_samples_leaf` is a percentage and
`ceil(min_samples_leaf * n_samples)` are the minimum
number of samples for each node.

.. versionchanged:: 0.18
Added float values for percentages.

min_weight_fraction_leaf : float, optional (default=0.)
The minimum weighted fraction of the sum total of weights (of all
the input samples) required to be at a leaf node. Samples have
equal weight when sample_weight is not provided.

max_leaf_nodes : int or None, optional (default=None)
Grow trees with ``max_leaf_nodes`` in best-first fashion.
Best nodes are defined as relative reduction in impurity.
If None then unlimited number of leaf nodes.

min_impurity_split : float,
Threshold for early stopping in tree growth. A node will split
if its impurity is above the threshold, otherwise it is a leaf.

.. deprecated:: 0.19
``min_impurity_split`` has been deprecated in favor of
``min_impurity_decrease`` in 0.19 and will be removed in 0.21.
Use ``min_impurity_decrease`` instead.

min_impurity_decrease : float, optional (default=0.)
A node will be split if this split induces a decrease of the impurity
greater than or equal to this value.

The weighted impurity decrease equation is the following::

N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)

where ``N`` is the total number of samples, ``N_t`` is the number of
samples at the current node, ``N_t_L`` is the number of samples in the
left child, and ``N_t_R`` is the number of samples in the right child.

``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
if ``sample_weight`` is passed.

.. versionadded:: 0.19

bootstrap : boolean, optional (default=True)
Whether bootstrap samples are used when building trees.

oob_score : bool (default=False)
Whether to use out-of-bag samples to estimate
the generalization accuracy.

n_jobs : integer, optional (default=1)
The number of jobs to run in parallel for both `fit` and `predict`.
If -1, then the number of jobs is set to the number of cores.

random_state : int, RandomState instance or None, optional
(default=None)
If int, random_state is the seed used by the random number
generator;
If RandomState instance, random_state is the random number
generator;
If None, the random number generator is the RandomState instance
used
by `np.random`.

verbose : int, optional (default=0)
Controls the verbosity of the tree building process.

warm_start : bool, optional (default=False)
When set to ``True``, reuse the solution of the previous call to fit
and add more estimators to the ensemble, otherwise, just fit a whole
new forest.

class_weight : dict, list of dicts, "balanced",
"balanced_subsample" or None, optional (default=None)
Weights associated with classes in the form ``{class_label: weight}``.
If not given, all classes are supposed to have weight one. For
multi-output problems, a list of dicts can be provided in the same
order as the columns of y.

Note that for multioutput (including multilabel) weights should be
defined for each class of every column in its own dict. For example,
for four-class multilabel classification weights should be
[{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of
[{1:1}, {2:5}, {3:1}, {4:1}].

The "balanced" mode uses the values of y to automatically adjust
weights inversely proportional to class frequencies in the input data
as ``n_samples / (n_classes * np.bincount(y))``

The "balanced_subsample" mode is the same as "balanced" except
that
weights are computed based on the bootstrap sample for every tree
grown.

For multi-output, the weights of each column of y will be multiplied.

Note that these weights will be multiplied with sample_weight
(passed
through the fit method) if sample_weight is specified.

Attributes
----------
estimators_ : list of DecisionTreeClassifier
The collection of fitted sub-estimators.

classes_ : array of shape = [n_classes] or a list of such arrays
The classes labels (single output problem), or a list of arrays of
class labels (multi-output problem).

n_classes_ : int or list
The number of classes (single output problem), or a list containing the
number of classes for each output (multi-output problem).

n_features_ : int
The number of features when ``fit`` is performed.

n_outputs_ : int
The number of outputs when ``fit`` is performed.

feature_importances_ : array of shape = [n_features]
The feature importances (the higher, the more important the feature).

oob_score_ : float
Score of the training dataset obtained using an out-of-bag estimate.

oob_decision_function_ : array of shape = [n_samples, n_classes]
Decision function computed with out-of-bag estimate on the training
set. If n_estimators is small it might be possible that a data point
was never left out during the bootstrap. In this case,
`oob_decision_function_` might contain NaN.

Examples
--------
>>> from sklearn.ensemble import RandomForestClassifier
>>> from sklearn.datasets import make_classification
>>>
>>> X, y = make_classification(n_samples=1000, n_features=4,
... n_informative=2, n_redundant=0,
... random_state=0, shuffle=False)
>>> clf = RandomForestClassifier(max_depth=2, random_state=0)
>>> clf.fit(X, y)
RandomForestClassifier(bootstrap=True, class_weight=None,
criterion='gini',
max_depth=2, max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,
oob_score=False, random_state=0, verbose=0, warm_start=False)
>>> print(clf.feature_importances_)
[ 0.17287856 0.80608704 0.01884792 0.00218648]
>>> print(clf.predict([[0, 0, 0, 0]]))
[1]

Notes
-----
The default values for the parameters controlling the size of the trees
(e.g. ``max_depth``, ``min_samples_leaf``, etc.) lead to fully grown and
unpruned trees which can potentially be very large on some data
sets. To
reduce memory consumption, the complexity and size of the trees
should be
controlled by setting those parameter values.

The features are always randomly permuted at each split. Therefore,
the best found split may vary, even with the same training data,
``max_features=n_features`` and ``bootstrap=False``, if the
improvement
of the criterion is identical for several splits enumerated during the
search of the best split. To obtain a deterministic behaviour during
fitting, ``random_state`` has to be fixed.

References
----------

.. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32,
2001.

See also
--------
DecisionTreeClassifier, ExtraTreesClassifier
"""
def __init__(self,
n_estimators=10,
criterion="gini",
max_depth=None,
min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.,
max_features="auto",
max_leaf_nodes=None,
min_impurity_decrease=0.,
min_impurity_split=None,
bootstrap=True,
oob_score=False,
n_jobs=1,
random_state=None,
verbose=0,
warm_start=False,
class_weight=None):
super(RandomForestClassifier, self).__init__
(base_estimator=DecisionTreeClassifier(), n_estimators=n_estimators,
estimator_params=("criterion", "max_depth", "min_samples_split",
"min_samples_leaf", "min_weight_fraction_leaf", "max_features",
"max_leaf_nodes", "min_impurity_decrease", "min_impurity_split",
"random_state"), bootstrap=bootstrap, oob_score=oob_score,
n_jobs=n_jobs, random_state=random_state, verbose=verbose,
warm_start=warm_start, class_weight=class_weight)
self.criterion = criterion
self.max_depth = max_depth
self.min_samples_split = min_samples_split
self.min_samples_leaf = min_samples_leaf
self.min_weight_fraction_leaf = min_weight_fraction_leaf
self.max_features = max_features
self.max_leaf_nodes = max_leaf_nodes
self.min_impurity_decrease = min_impurity_decrease
self.min_impurity_split = min_impurity_split
class XGBClassifier(XGBModel, XGBClassifierBase):
# pylint: disable=missing-docstring,too-many-arguments,invalid-name
__doc__ = "Implementation of the scikit-learn API for XGBoost classification.\n\n" + '\n'.join
(XGBModel.__doc__.split('\n')[2:])
def __init__(self, max_depth=3, learning_rate=0.1,
n_estimators=100, silent=True,
objective="binary:logistic", booster='gbtree',
n_jobs=1, nthread=None, gamma=0, min_child_weight=1,
max_delta_step=0, subsample=1, colsample_bytree=1, colsample_bylevel=1,
reg_alpha=0, reg_lambda=1, scale_pos_weight=1,
base_score=0.5, random_state=0, seed=None, missing=None, **kwargs):
super(XGBClassifier, self).__init__(max_depth, learning_rate, n_estimators, silent,
objective, booster, n_jobs, nthread, gamma, min_child_weight, max_delta_step, subsample,
colsample_bytree, colsample_bylevel, reg_alpha, reg_lambda, scale_pos_weight,
base_score, random_state, seed, missing, **kwargs)

def fit(self, X, y, sample_weight=None, eval_set=None, eval_metric=None,
early_stopping_rounds=None, verbose=True, xgb_model=None,
sample_weight_eval_set=None, callbacks=
# pylint: disable = attribute-defined-outside-init,arguments-differ
None):
"""
Fit gradient boosting classifier

Parameters
----------
X : array_like
Feature matrix
y : array_like
Labels
sample_weight : array_like
Weight for each instance
eval_set : list, optional
A list of (X, y) pairs to use as a validation set for
early-stopping
sample_weight_eval_set : list, optional
A list of the form [L_1, L_2, ..., L_n], where each L_i is a list of
instance weights on the i-th validation set.
eval_metric : str, callable, optional
If a str, should be a built-in evaluation metric to use. See
doc/parameter.rst. If callable, a custom evaluation metric. The call
signature is func(y_predicted, y_true) where y_true will be a
DMatrix object such that you may need to call the get_label
method. It must return a str, value pair where the str is a name
for the evaluation and value is the value of the evaluation
function. This objective is always minimized.
early_stopping_rounds : int, optional
Activates early stopping. Validation error needs to decrease at
least every <early_stopping_rounds> round(s) to continue training.
Requires at least one item in evals. If there's more than one,
will use the last. If early stopping occurs, the model will have
three additional fields: bst.best_score, bst.best_iteration and
bst.best_ntree_limit (bst.best_ntree_limit is the ntree_limit parameter
default value in predict method if not any other value is specified).
(Use bst.best_ntree_limit to get the correct value if num_parallel_tree
and/or num_class appears in the parameters)
verbose : bool
If `verbose` and an evaluation set is used, writes the evaluation
metric measured on the validation set to stderr.
xgb_model : str
file name of stored xgb model or 'Booster' instance Xgb model to be
loaded before training (allows training continuation).
callbacks : list of callback functions
List of callback functions that are applied at end of each iteration.
It is possible to use predefined callbacks by using :ref:`callback_api`.
Example:

.. code-block:: python

[xgb.callback.reset_learning_rate(custom_rates)]
"""
evals_result = {}
self.classes_ = np.unique(y)
self.n_classes_ = len(self.classes_)
xgb_options = self.get_xgb_params()
if callable(self.objective):
obj = _objective_decorator(self.objective)
# Use default value. Is it really not used ?
xgb_options["objective"] = "binary:logistic"
else:
obj = None
if self.n_classes_ > 2:
# Switch to using a multiclass objective in the underlying XGB instance
xgb_options["objective"] = "multi:softprob"
xgb_options['num_class'] = self.n_classes_
feval = eval_metric if callable(eval_metric) else None
if eval_metric is not None:
if callable(eval_metric):
eval_metric = None
else:
xgb_options.update({"eval_metric":eval_metric})
self._le = XGBLabelEncoder().fit(y)
training_labels = self._le.transform(y)
if eval_set is not None:
if sample_weight_eval_set is None:
sample_weight_eval_set = [None] * len(eval_set)
evals = list(
DMatrix(eval_set[i][0], label=self._le.transform(eval_set[i][1]),
missing=self.missing, weight=sample_weight_eval_set[i],
nthread=self.n_jobs) for
i in range(len(eval_set)))
nevals = len(evals)
eval_names = ["validation_{}".format(i) for i in range(nevals)]
evals = list(zip(evals, eval_names))
else:
evals = ()
self._features_count = X.shape[1]
if sample_weight is not None:
train_dmatrix = DMatrix(X, label=training_labels, weight=sample_weight,
missing=self.missing, nthread=self.n_jobs)
else:
train_dmatrix = DMatrix(X, label=training_labels,
missing=self.missing, nthread=self.n_jobs)
self._Booster = train(xgb_options, train_dmatrix, self.n_estimators,
evals=evals,
early_stopping_rounds=early_stopping_rounds,
evals_result=evals_result, obj=obj, feval=feval,
verbose_eval=verbose, xgb_model=xgb_model,
callbacks=callbacks)
self.objective = xgb_options["objective"]
if evals_result:
for val in evals_result.items():
evals_result_key = list(val[1].keys())[0]
evals_result[val[0]][evals_result_key] = val[1][evals_result_key]

self.evals_result_ = evals_result
if early_stopping_rounds is not None:
self.best_score = self._Booster.best_score
self.best_iteration = self._Booster.best_iteration
self.best_ntree_limit = self._Booster.best_ntree_limit
return self

def predict(self, data, output_margin=False, ntree_limit=None, validate_features=True):
"""
Predict with `data`.

.. note:: This function is not thread safe.

For each booster object, predict can only be called from one thread.
If you want to run prediction using multiple thread, call ``xgb.copy()`` to make copies
of model object and then call ``predict()``.

.. note:: Using ``predict()`` with DART booster

If the booster object is DART type, ``predict()`` will perform dropouts, i.e. only
some of the trees will be evaluated. This will produce incorrect results if ``data`` is
not the training data. To obtain correct results on test sets, set ``ntree_limit`` to
a nonzero value, e.g.

.. code-block:: python

preds = bst.predict(dtest, ntree_limit=num_round)

Parameters
----------
data : DMatrix
The dmatrix storing the input.
output_margin : bool
Whether to output the raw untransformed margin value.
ntree_limit : int
Limit number of trees in the prediction; defaults to best_ntree_limit if defined
(i.e. it has been trained with early stopping), otherwise 0 (use all trees).
validate_features : bool
When this is True, validate that the Booster's and data's feature_names are identical.
Otherwise, it is assumed that the feature_names are the same.
Returns
-------
prediction : numpy array
"""
test_dmatrix = DMatrix(data, missing=self.missing, nthread=self.n_jobs)
if ntree_limit is None:
ntree_limit = getattr(self, "best_ntree_limit", 0)
class_probs = self.get_booster().predict(test_dmatrix,
output_margin=output_margin,
ntree_limit=ntree_limit,
validate_features=validate_features)
if output_margin:
# If output_margin is active, simply return the scores
return class_probs
if len(class_probs.shape) > 1:
column_indexes = np.argmax(class_probs, axis=1)
else:
column_indexes = np.repeat(0, class_probs.shape[0])
column_indexes[class_probs > 0.5] = 1
return self._le.inverse_transform(column_indexes)

def predict_proba(self, data, ntree_limit=None, validate_features=True):
"""
Predict the probability of each `data` example being of a given class.

.. note:: This function is not thread safe

For each booster object, predict can only be called from one thread.
If you want to run prediction using multiple thread, call ``xgb.copy()`` to make copies
of model object and then call predict

Parameters
----------
data : DMatrix
The dmatrix storing the input.
ntree_limit : int
Limit number of trees in the prediction; defaults to best_ntree_limit if defined
(i.e. it has been trained with early stopping), otherwise 0 (use all trees).
validate_features : bool
When this is True, validate that the Booster's and data's feature_names are identical.
Otherwise, it is assumed that the feature_names are the same.

Returns
-------
prediction : numpy array
a numpy array with the probability of each data example being of a given class.
"""
test_dmatrix = DMatrix(data, missing=self.missing, nthread=self.n_jobs)
if ntree_limit is None:
ntree_limit = getattr(self, "best_ntree_limit", 0)
class_probs = self.get_booster().predict(test_dmatrix,
ntree_limit=ntree_limit,
validate_features=validate_features)
if self.objective == "multi:softprob":
return class_probs
else:
classone_probs = class_probs
classzero_probs = 1.0 - classone_probs
return np.vstack((classzero_probs, classone_probs)).transpose()

def evals_result(self):
"""Return the evaluation results.

If **eval_set** is passed to the `fit` function, you can call
``evals_result()`` to get evaluation results for all passed **eval_sets**.
When **eval_metric** is also passed to the `fit` function, the
**evals_result** will contain the **eval_metrics** passed to the `fit` function.

Returns
-------
evals_result : dictionary

Example
-------

.. code-block:: python

param_dist = {'objective':'binary:logistic', 'n_estimators':2}

clf = xgb.XGBClassifier(**param_dist)

clf.fit(X_train, y_train,
eval_set=[(X_train, y_train), (X_test, y_test)],
eval_metric='logloss',
verbose=True)

evals_result = clf.evals_result()

The variable **evals_result** will contain

.. code-block:: python

{'validation_0': {'logloss': ['0.604835', '0.531479']},
'validation_1': {'logloss': ['0.41965', '0.17686']}}
"""
if self.evals_result_:
evals_result = self.evals_result_
else:
raise XGBoostError('No results.')
return evals_result