ML之RF:kaggle比赛之利用泰坦尼克号数据集建立RF模型对每个人进行获救是否预测
目录
输出结果
实现代码
输出结果
后期更新……
实现代码
#预测模型选择的RF
import numpy as np
import pandas as pd
from pandas import DataFrame
from patsy import dmatrices
import string
from operator import itemgetter
import json
from sklearn.ensemble import RandomForestClassifier
from sklearn.cross_validation import cross_val_score
from sklearn.pipeline import Pipeline
from sklearn.grid_search import GridSearchCV
from sklearn.cross_validation import train_test_split,StratifiedShuffleSplit,StratifiedKFold
from sklearn import preprocessing
from sklearn.metrics import classification_report
from sklearn.externals import joblib
##Read configuration parameters
train_file="train.csv"
MODEL_PATH="./"
test_file="test.csv"
SUBMISSION_PATH="./"
seed= 0
print(train_file,seed)
# 输出得分
def report(grid_scores, n_top=3):
top_scores = sorted(grid_scores, key=itemgetter(1), reverse=True)[:n_top]
for i, score in enumerate(top_scores):
print("Model with rank: {0}".format(i + 1))
print("Mean validation score: {0:.3f} (std: {1:.3f})".format(
score.mean_validation_score,
np.std(score.cv_validation_scores)))
print("Parameters: {0}".format(score.parameters))
print("")
#清理和处理数据
def substrings_in_string(big_string, substrings):
for substring in substrings:
if string.find(big_string, substring) != -1:
return substring
print(big_string)
return np.nan
le = preprocessing.LabelEncoder()
enc=preprocessing.OneHotEncoder()
def clean_and_munge_data(df):
#处理缺省值
df.Fare = df.Fare.map(lambda x: np.nan if x==0 else x)
#处理一下名字,生成Title字段
title_list=['Mrs', 'Mr', 'Master', 'Miss', 'Major', 'Rev',
'Dr', 'Ms', 'Mlle','Col', 'Capt', 'Mme', 'Countess',
'Don', 'Jonkheer']
df['Title']=df['Name'].map(lambda x: substrings_in_string(x, title_list))
#处理特殊的称呼,全处理成mr, mrs, miss, master
def replace_titles(x):
title=x['Title']
if title in ['Mr','Don', 'Major', 'Capt', 'Jonkheer', 'Rev', 'Col']:
return 'Mr'
elif title in ['Master']:
return 'Master'
elif title in ['Countess', 'Mme','Mrs']:
return 'Mrs'
elif title in ['Mlle', 'Ms','Miss']:
return 'Miss'
elif title =='Dr':
if x['Sex']=='Male':
return 'Mr'
else:
return 'Mrs'
elif title =='':
if x['Sex']=='Male':
return 'Master'
else:
return 'Miss'
else:
return title
df['Title']=df.apply(replace_titles, axis=1)
#看看家族是否够大,咳咳
df['Family_Size']=df['SibSp']+df['Parch']
df['Family']=df['SibSp']*df['Parch']
df.loc[ (df.Fare.isnull())&(df.Pclass==1),'Fare'] =np.median(df[df['Pclass'] == 1]['Fare'].dropna())
df.loc[ (df.Fare.isnull())&(df.Pclass==2),'Fare'] =np.median( df[df['Pclass'] == 2]['Fare'].dropna())
df.loc[ (df.Fare.isnull())&(df.Pclass==3),'Fare'] = np.median(df[df['Pclass'] == 3]['Fare'].dropna())
df['Gender'] = df['Sex'].map( {'female': 0, 'male': 1} ).astype(int)
df['AgeFill']=df['Age']
mean_ages = np.zeros(4)
mean_ages[0]=np.average(df[df['Title'] == 'Miss']['Age'].dropna())
mean_ages[1]=np.average(df[df['Title'] == 'Mrs']['Age'].dropna())
mean_ages[2]=np.average(df[df['Title'] == 'Mr']['Age'].dropna())
mean_ages[3]=np.average(df[df['Title'] == 'Master']['Age'].dropna())
df.loc[ (df.Age.isnull()) & (df.Title == 'Miss') ,'AgeFill'] = mean_ages[0]
df.loc[ (df.Age.isnull()) & (df.Title == 'Mrs') ,'AgeFill'] = mean_ages[1]
df.loc[ (df.Age.isnull()) & (df.Title == 'Mr') ,'AgeFill'] = mean_ages[2]
df.loc[ (df.Age.isnull()) & (df.Title == 'Master') ,'AgeFill'] = mean_ages[3]
df['AgeCat']=df['AgeFill']
df.loc[ (df.AgeFill<=10) ,'AgeCat'] = 'child'
df.loc[ (df.AgeFill>60),'AgeCat'] = 'aged'
df.loc[ (df.AgeFill>10) & (df.AgeFill <=30) ,'AgeCat'] = 'adult'
df.loc[ (df.AgeFill>30) & (df.AgeFill <=60) ,'AgeCat'] = 'senior'
df.Embarked = df.Embarked.fillna('S')
df.loc[ df.Cabin.isnull()==True,'Cabin'] = 0.5
df.loc[ df.Cabin.isnull()==False,'Cabin'] = 1.5
df['Fare_Per_Person']=df['Fare']/(df['Family_Size']+1)
#Age times class
df['AgeClass']=df['AgeFill']*df['Pclass']
df['ClassFare']=df['Pclass']*df['Fare_Per_Person']
df['HighLow']=df['Pclass']
df.loc[ (df.Fare_Per_Person<8) ,'HighLow'] = 'Low'
df.loc[ (df.Fare_Per_Person>=8) ,'HighLow'] = 'High'
le.fit(df['Sex'] )
x_sex=le.transform(df['Sex'])
df['Sex']=x_sex.astype(np.float)
le.fit( df['Ticket'])
x_Ticket=le.transform( df['Ticket'])
df['Ticket']=x_Ticket.astype(np.float)
le.fit(df['Title'])
x_title=le.transform(df['Title'])
df['Title'] =x_title.astype(np.float)
le.fit(df['HighLow'])
x_hl=le.transform(df['HighLow'])
df['HighLow']=x_hl.astype(np.float)
le.fit(df['AgeCat'])
x_age=le.transform(df['AgeCat'])
df['AgeCat'] =x_age.astype(np.float)
le.fit(df['Embarked'])
x_emb=le.transform(df['Embarked'])
df['Embarked']=x_emb.astype(np.float)
df = df.drop(['PassengerId','Name','Age','Cabin'], axis=1) #remove Name,Age and PassengerId
return df
#读取数据
traindf=pd.read_csv(train_file)
##清洗数据
df=clean_and_munge_data(traindf)
########################################formula################################
formula_ml='Survived~Pclass+C(Title)+Sex+C(AgeCat)+Fare_Per_Person+Fare+Family_Size'
y_train, x_train = dmatrices(formula_ml, data=df, return_type='dataframe')
y_train = np.asarray(y_train).ravel()
print(y_train.shape,x_train.shape)
##选择训练和测试集
X_train, X_test, Y_train, Y_test = train_test_split(x_train, y_train, test_size=0.2,random_state=seed)
#初始化分类器
clf=RandomForestClassifier(n_estimators=500, criterion='entropy', max_depth=5, min_samples_split=1,
min_samples_leaf=1, max_features='auto', bootstrap=False, oob_score=False, n_jobs=1, random_state=seed,
verbose=0)
###grid search找到最好的参数
param_grid = dict( )
##创建分类pipeline
pipeline=Pipeline([ ('clf',clf) ])
grid_search = GridSearchCV(pipeline, param_grid=param_grid, verbose=3,scoring='accuracy',\
cv=StratifiedShuffleSplit(Y_train, n_iter=10, test_size=0.2, train_size=None, indices=None, \
random_state=seed, n_iterations=None)).fit(X_train, Y_train)
# 对结果打分
print("Best score: %0.3f" % grid_search.best_score_)
print(grid_search.best_estimator_)
report(grid_search.grid_scores_)
print('-----grid search end------------')
print ('on all train set')
scores = cross_val_score(grid_search.best_estimator_, x_train, y_train,cv=3,scoring='accuracy')
print(scores.mean(),scores)
print ('on test set')
scores = cross_val_score(grid_search.best_estimator_, X_test, Y_test,cv=3,scoring='accuracy')
print(scores.mean(),scores)
# 对结果打分
print(classification_report(Y_train, grid_search.best_estimator_.predict(X_train) ))
print('test data')
print(classification_report(Y_test, grid_search.best_estimator_.predict(X_test) ))
model_file=MODEL_PATH+'model-rf.pkl'
joblib.dump(grid_search.best_estimator_, model_file)