目录

一、前言:

二、理论难点:

距离度量:

欧式距离:

三、数据可视化

四、数据归一化:

五、代码实践:

理论补充

实验一: 海伦约会

实验二 使用sklearn实现knn

六、总结

1、kNN算法的优缺点

2、其他

参考资料:


一、前言:

按照机器学习实战---每一次学习都应该按照如下步骤进行思考:


  1. 收集数据:可以使用爬虫进行数据的收集,也可以使用第三方提供的免费或收费的数据。一般来讲,数据放在txt文本文件中,按照一定的格式进行存储,便于解析及处理。
  2. 准备数据:使用Python解析、预处理数据。
  3. 分析数据:可以使用很多方法对数据进行分析,例如使用Matplotlib将数据可视化。
  4. 测试算法:计算错误率。
  5. 使用算法:错误率在可接受范围内,就可以运行k-近邻算法进行分类。

k-近邻算法步骤如下:


  1. 计算已知类别数据集中的点与当前点之间的距离;
  2. 按照距离递增次序排序;
  3. 选取与当前点距离最小的k个点;
  4. 确定前k个点所在类别的出现频率;
  5. 返回前k个点所出现频率最高的类别作为当前点的预测分类。

二、理论难点:

直接看书的话,容易被什么欧拉公式什么的吓到,建议简单入手,参考:

https://cuijiahua.com/blog/2017/11/ml_1_knn.html#comments

距离度量:

统计学方法&机器学习实战(二) K近邻算法_KNN

欧式距离:

统计学方法&机器学习实战(二) K近邻算法_KNN_02

三、数据可视化

# -*- coding: UTF-8 -*-
from matplotlib.font_manager import FontProperties
import matplotlib.lines as mlines
import matplotlib.pyplot as plt
import numpy as np

"""
函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力

Parameters:
filename - 文件名
Returns:
returnMat - 特征矩阵
classLabelVector - 分类Label向量

Modify:
2017-03-24
"""
def file2matrix(filename):
#打开文件
fr = open(filename)
#读取文件所有内容
arrayOLines = fr.readlines()
#得到文件行数
numberOfLines = len(arrayOLines)
#返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列
returnMat = np.zeros((numberOfLines,3))
#返回的分类标签向量
classLabelVector = []
#行的索引值
index = 0
for line in arrayOLines:
#s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ')
line = line.strip()
#使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。
listFromLine = line.split('\t')
#将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵
returnMat[index,:] = listFromLine[0:3]
#根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力
if listFromLine[-1] == 'didntLike':
classLabelVector.append(1)
elif listFromLine[-1] == 'smallDoses':
classLabelVector.append(2)
elif listFromLine[-1] == 'largeDoses':
classLabelVector.append(3)
index += 1
return returnMat, classLabelVector

"""
函数说明:可视化数据

Parameters:
datingDataMat - 特征矩阵
datingLabels - 分类Label
Returns:

Modify:
2017-03-24
"""
def showdatas(datingDataMat, datingLabels):
#设置汉字格式
font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=14)
#将fig画布分隔成1行1列,不共享x轴和y轴,fig画布的大小为(13,8)
#当nrow=2,nclos=2时,代表fig画布被分为四个区域,axs[0][0]表示第一行第一个区域
fig, axs = plt.subplots(nrows=2, ncols=2,sharex=False, sharey=False, figsize=(13,8))

numberOfLabels = len(datingLabels)
LabelsColors = []
for i in datingLabels:
if i == 1:
LabelsColors.append('black')
if i == 2:
LabelsColors.append('orange')
if i == 3:
LabelsColors.append('red')
#画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第二列(玩游戏)数据画散点数据,散点大小为15,透明度为0.5
axs[0][0].scatter(x=datingDataMat[:,0], y=datingDataMat[:,1], color=LabelsColors,s=15, alpha=.5)
#设置标题,x轴label,y轴label
axs0_title_text = axs[0][0].set_title(u'每年获得的飞行常客里程数与玩视频游戏所消耗时间占比',FontProperties=font)
axs0_xlabel_text = axs[0][0].set_xlabel(u'每年获得的飞行常客里程数',FontProperties=font)
axs0_ylabel_text = axs[0][0].set_ylabel(u'玩视频游戏所消耗时间占',FontProperties=font)
plt.setp(axs0_title_text, size=9, weight='bold', color='red')
plt.setp(axs0_xlabel_text, size=7, weight='bold', color='black')
plt.setp(axs0_ylabel_text, size=7, weight='bold', color='black')

#画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5
axs[0][1].scatter(x=datingDataMat[:,0], y=datingDataMat[:,2], color=LabelsColors,s=15, alpha=.5)
#设置标题,x轴label,y轴label
axs1_title_text = axs[0][1].set_title(u'每年获得的飞行常客里程数与每周消费的冰激淋公升数',FontProperties=font)
axs1_xlabel_text = axs[0][1].set_xlabel(u'每年获得的飞行常客里程数',FontProperties=font)
axs1_ylabel_text = axs[0][1].set_ylabel(u'每周消费的冰激淋公升数',FontProperties=font)
plt.setp(axs1_title_text, size=9, weight='bold', color='red')
plt.setp(axs1_xlabel_text, size=7, weight='bold', color='black')
plt.setp(axs1_ylabel_text, size=7, weight='bold', color='black')

#画出散点图,以datingDataMat矩阵的第二(玩游戏)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5
axs[1][0].scatter(x=datingDataMat[:,1], y=datingDataMat[:,2], color=LabelsColors,s=15, alpha=.5)
#设置标题,x轴label,y轴label
axs2_title_text = axs[1][0].set_title(u'玩视频游戏所消耗时间占比与每周消费的冰激淋公升数',FontProperties=font)
axs2_xlabel_text = axs[1][0].set_xlabel(u'玩视频游戏所消耗时间占比',FontProperties=font)
axs2_ylabel_text = axs[1][0].set_ylabel(u'每周消费的冰激淋公升数',FontProperties=font)
plt.setp(axs2_title_text, size=9, weight='bold', color='red')
plt.setp(axs2_xlabel_text, size=7, weight='bold', color='black')
plt.setp(axs2_ylabel_text, size=7, weight='bold', color='black')
#设置图例
didntLike = mlines.Line2D([], [], color='black', marker='.',
markersize=6, label='didntLike')
smallDoses = mlines.Line2D([], [], color='orange', marker='.',
markersize=6, label='smallDoses')
largeDoses = mlines.Line2D([], [], color='red', marker='.',
markersize=6, label='largeDoses')
#添加图例
axs[0][0].legend(handles=[didntLike,smallDoses,largeDoses])
axs[0][1].legend(handles=[didntLike,smallDoses,largeDoses])
axs[1][0].legend(handles=[didntLike,smallDoses,largeDoses])
#显示图片
plt.show()

"""
函数说明:main函数

Parameters:

Returns:


Modify:
2017-03-24
"""
if __name__ == '__main__':
#打开的文件名
filename = "datingTestSet.txt"
#打开并处理数据
datingDataMat, datingLabels = file2matrix(filename)
showdatas(datingDataMat, datingLabels)


四、数据归一化:

因为我们希望我们的样本的特征都是同等重要的。而如果只按照公式来算:

统计学方法&机器学习实战(二) K近邻算法_文件名_03

显然飞机的里程会更为重要,所以需要归一化:

归一化的方法有挺多种,目的是如将取值范围处理为0到1或者-1到1之间

本次练习采用:

newValue = (oldValue - min) / (max - min)

其中min和max分别是数据集中的最小特征值和最大特征值。虽然改变数值取值范围增加了分类器的复杂度,但为了得到准确结果,我们必须这样做。

五、代码实践:

理论补充

统计学习方法-KNN原理学习-统计学习的课后作业

统计学方法&机器学习实战(二) K近邻算法_数据_04

PS:KD树的构建可以看教材的实现代码

实验一: 海伦约会

import numpy as np
import operator

"""
函数说明:kNN算法,分类器

Parameters:
inX - 用于分类的数据(测试集)
dataSet - 用于训练的数据(训练集)
labes - 分类标签
k - kNN算法参数,选择距离最小的k个点
Returns:
sortedClassCount[0][0] - 分类结果

"""
def classify0(inX, dataSet, labels, k):
#numpy函数shape[0]返回dataSet的行数
dataSetSize = dataSet.shape[0]
#在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向)
diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet
#二维特征相减后平方
sqDiffMat = diffMat**2
#sum()所有元素相加,sum(0)列相加,sum(1)行相加
sqDistances = sqDiffMat.sum(axis=1)
#开方,计算出距离
distances = sqDistances**0.5
#返回distances中元素从小到大排序后的索引值
sortedDistIndices = distances.argsort()
#定一个记录类别次数的字典
classCount = {}
for i in range(k):
#取出前k个元素的类别
voteIlabel = labels[sortedDistIndices[i]]
#dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。
#计算类别次数
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
#python3中用items()替换python2中的iteritems()
#key=operator.itemgetter(1)根据字典的值进行排序
#key=operator.itemgetter(0)根据字典的键进行排序
#reverse降序排序字典
sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
#返回次数最多的类别,即所要分类的类别
return sortedClassCount[0][0]


"""
函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力

Parameters:
filename - 文件名
Returns:
returnMat - 特征矩阵
classLabelVector - 分类Label向量
"""
def file2matrix(filename):
#打开文件
fr = open(filename)
#读取文件所有内容
arrayOLines = fr.readlines()
#得到文件行数
numberOfLines = len(arrayOLines)
#返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列
returnMat = np.zeros((numberOfLines,3))
#返回的分类标签向量
classLabelVector = []
#行的索引值
index = 0
for line in arrayOLines:
#s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ')
line = line.strip()
#使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。
listFromLine = line.split('\t')
#将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵
returnMat[index,:] = listFromLine[0:3]
#根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力
if listFromLine[-1] == 'didntLike':
classLabelVector.append(1)
elif listFromLine[-1] == 'smallDoses':
classLabelVector.append(2)
elif listFromLine[-1] == 'largeDoses':
classLabelVector.append(3)
index += 1
return returnMat, classLabelVector

"""
函数说明:对数据进行归一化

Parameters:
dataSet - 特征矩阵
Returns:
normDataSet - 归一化后的特征矩阵
ranges - 数据范围
minVals - 数据最小值

"""
def autoNorm(dataSet):
#获得数据的最小值
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
#最大值和最小值的范围
ranges = maxVals - minVals
#shape(dataSet)返回dataSet的矩阵行列数
normDataSet = np.zeros(np.shape(dataSet))
#返回dataSet的行数
m = dataSet.shape[0]
#原始值减去最小值
normDataSet = dataSet - np.tile(minVals, (m, 1))
#除以最大和最小值的差,得到归一化数据
normDataSet = normDataSet / np.tile(ranges, (m, 1))
#返回归一化数据结果,数据范围,最小值
return normDataSet, ranges, minVals

"""
函数说明:通过输入一个人的三维特征,进行分类输出

Parameters:

Returns:

"""
def classifyPerson():
#输出结果
resultList = ['讨厌','有些喜欢','非常喜欢']
#三维特征用户输入
precentTats = float(input("玩视频游戏所耗时间百分比:"))
ffMiles = float(input("每年获得的飞行常客里程数:"))
iceCream = float(input("每周消费的冰激淋公升数:"))
#打开的文件名
filename = "datingTestSet.txt"
#打开并处理数据
datingDataMat, datingLabels = file2matrix(filename)
#训练集归一化
normMat, ranges, minVals = autoNorm(datingDataMat)
#生成NumPy数组,测试集
inArr = np.array([ffMiles, precentTats, iceCream])
#测试集归一化
norminArr = (inArr - minVals) / ranges
#返回分类结果
classifierResult = classify0(norminArr, normMat, datingLabels, 3)
#打印结果
print("你可能%s这个人" % (resultList[classifierResult-1]))

"""
函数说明:main函数

Parameters:

Returns:

"""
if __name__ == '__main__':
classifyPerson()

结果:

统计学方法&机器学习实战(二) K近邻算法_文件名_05


实验二 使用sklearn实现knn

import numpy as np
import operator
from os import listdir
from sklearn.neighbors import KNeighborsClassifier as kNN

"""
函数说明:将32x32的二进制图像转换为1x1024向量。

Parameters:
filename - 文件名
Returns:
returnVect - 返回的二进制图像的1x1024向量

Modify:
2020-07-14
"""
def img2vector(filename):
#创建1x1024零向量
returnVect = np.zeros((1, 1024))
#打开文件
fr = open(filename)
#按行读取
for i in range(32):
#读一行数据
lineStr = fr.readline()
#每一行的前32个元素依次添加到returnVect中
for j in range(32):
returnVect[0, 32*i+j] = int(lineStr[j])
#返回转换后的1x1024向量
return returnVect

"""
函数说明:手写数字分类测试

Parameters:

Returns:


Modify:
2020-07-15
"""
def handwritingClassTest():
#测试集的Labels
hwLabels = []
#返回trainingDigits目录下的文件名
trainingFileList = listdir('trainingDigits')
#返回文件夹下文件的个数
m = len(trainingFileList)
#初始化训练的Mat矩阵,测试集
trainingMat = np.zeros((m, 1024))
#从文件名中解析出训练集的类别
for i in range(m):
#获得文件的名字
fileNameStr = trainingFileList[i]
#获得分类的数字
classNumber = int(fileNameStr.split('_')[0])
#将获得的类别添加到hwLabels中
hwLabels.append(classNumber)
#将每一个文件的1x1024数据存储到trainingMat矩阵中
trainingMat[i,:] = img2vector('trainingDigits/%s' % (fileNameStr))
#构建kNN分类器
neigh = kNN(n_neighbors = 3, algorithm = 'auto')
#拟合模型, trainingMat为训练矩阵,hwLabels为对应的标签
neigh.fit(trainingMat, hwLabels)
#返回testDigits目录下的文件列表
testFileList = listdir('testDigits')
#错误检测计数
errorCount = 0.0
#测试数据的数量
mTest = len(testFileList)
#从文件中解析出测试集的类别并进行分类测试
for i in range(mTest):
#获得文件的名字
fileNameStr = testFileList[i]
#获得分类的数字
classNumber = int(fileNameStr.split('_')[0])
#获得测试集的1x1024向量,用于训练
vectorUnderTest = img2vector('testDigits/%s' % (fileNameStr))
#获得预测结果
# classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
classifierResult = neigh.predict(vectorUnderTest)
print("分类返回结果为%d\t真实结果为%d" % (classifierResult, classNumber))
if(classifierResult != classNumber):
errorCount += 1.0
print("总共错了%d个数据\n错误率为%f%%" % (errorCount, errorCount/mTest * 100))

结果:

统计学方法&机器学习实战(二) K近邻算法_文件名_06

上述代码使用的algorithm参数是auto,更改algorithm参数为brute,使用暴力搜索,你会发现,运行时间变长了,变为10s+。更改n_neighbors参数,你会发现,不同的值,检测精度也是不同的。自己可以尝试更改这些参数的设置,加深对其函数的理解。

六、总结

1、kNN算法的优缺点

优点:


  • 简单好用,容易理解,精度高,理论成熟,既可以用来做分类也可以用来做回归
  • 可用于数值型数据和离散型数据;
  • 训练时间复杂度为O(n);
  • 对异常值不敏感

缺点:


  • 计算复杂性高;空间复杂性高;
  • 样本不平衡问题(即有些类别的样本数量很多,而其它样本的数量很少);
  • 一般数值很大的时候不用这个,计算量太大。但是单个样本又不能太少,否则容易发生误分。
  • 最大的缺点是无法给出数据的内在含义。

2、其他

关于algorithm参数kd_tree的原理,可以查看《统计学方法 李航》书中的讲解;

关于距离度量的方法还有雪夫距离、马氏距离、巴氏距离;

参考资料:


  1. https://cuijiahua.com/blog/2017/11/ml_5_bayes_2.html
  2. 统计学习方法-李航
  3. 统计学习方法-课后练习
  4. 机器学习实战

笔记会放在我的Github里面