Child-Tuning:简单有效的微调涨点方法_神经网络

文 | 罗福莉

自BERT火了以后,基本上现在所有NLP领域都all in Pre-training & Fine-tuning了吧?但当“大”规模预训练模型遇上“小”规模标注数据时,往往直接Fine-tuning会存在过拟合现象,进一步会影响Fine-tune完后模型的Generalization能力。如何更好地应对这一问题呢?我们提出的Child-Tuning给出了一种新的解法--在Fine-tuning过程中仅更新预训练模型中部分网络的参数(这部分网络本文就叫做Child Network),这么简单直接的做法却效果奇赞,结果在GLUE上相较标准Fine-tune有0.5~8.6个点的效果提升,但却只需要几行代码的修改,你不想试试吗?


Child-Tuning:简单有效的微调涨点方法_python_02

目前,该论文《Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning》已被EMNLP'21接收(点击文末阅读原文跳转至论文)。

Paper:
https://arxiv.org/pdf/2109.05687.pdf

Code:
https://github.com/alibaba/AliceMind/tree/main/ChildTuning

当“大”模型遇上“小”数据

自BERT提出以来,预训练模型的参数量从最开始的3亿,逐渐攀升到了GPT-2的15亿,再到火出NLP圈的1750亿参数的GPT-3。

一方面模型越来越大,但另一方面,下游任务的标注数据量有些情况下却很少。如果直接将“大”模型在下游“小”数据上进行标准的Fine-tune,将模型迁移到目标任务中去,会导致什么情况呢?由于这种“大”与“小”的不匹配,往往容易出现过拟合的现象,导致模型在下游任务中的表现差、不稳定、泛化性能差等现象,从而影响我们对于预训练模型的使用[1]。

因此,越来越多工作开始聚焦于如何解决这种不匹配现象,缓解大规模预训练模型在下游任务中的过拟合。本文介绍的Child-Tuning围绕这个问题进行探究,从backward参数更新的角度思考问题,提出一种新的Fine-tuning策略,在Fine-tuning过程中仅更新对应的Child Network,在不同下游任务中相比Vanilla Fine-tuning有明显提高,如基于BERT模型在四个不同数据集中平均带来1.5个点的提升,在ELETRA上甚至提升8.6个点

Child-Tuning 微调算法

在Fine-tuning过程中,我们一方面想利用大规模预训练模型提供的强大知识,另一方面又想解决“海量参数”与“少量标注样本”的不匹配问题,那么能否采用这样的方式来解决问题呢?在forward的时候保持与正常Fine-tune一样,利用整个模型的参数来编码输入样本;在backward更新参数的时候,无需调整海量庞大的参数,而是仅仅其中中的一部分,即网络中的一个Child Network。

基于这个想法,本文提出一个新的Fine-tuning的策略——Child-Tuning。Child-Tuning的想法很简单,做法也很简单,概括性地讲可以分为两个步骤:

  • Step1:在预训练模型中发现确认Child Network,并生成对应的Weights的Gradients 0-1 Mask;
  • Step2:在后向传播计算完梯度之后,仅仅对Child Network中的参数进行更新,而其他参数保持不变。
    整个过程如下图所示:

Child-Tuning:简单有效的微调涨点方法_python_03

▲图1: 通过Gradients Mask来实现只对Child Network进行参数更新

在前面提到的Child-Tuning的两个步骤中,Step2即仅对Child Network中的参数进行更新相对简单。我们可以通过一个 梯度掩码(Gradients Mask) 来实现,即在计算出各个参数位置的梯度之后将其乘以一个0-1矩阵的梯度掩码,属于Child Network中参数的位置对应为1,而不属于的对应为0,之后再进行参数的更新。

那问题的关键就落到了,怎么识别Step1提到的Child Network呢? 本文探索了两种算法。一种是与下游任务无关的Child-Tuning_F方法,另一种则是与下游任务相关、能够自适应感知下游任务特点的Child-Tuning_D,这两种方式各有优缺点。

任务无关算法Child-Tuning_F

对于下游任务无关算法Child-Tuning_F(F for Task-Free) ,其最大的优点是简单有效,在Fine-tune的过程中,只需要在每一步更新的迭代中,从伯努利分布中采样得到一个Gradients Mask (M_t)即可,相当于在对网络参数更新的时候随机地将一部分梯度丢弃


Child-Tuning:简单有效的微调涨点方法_大数据_04

▲图2: Child-Tuning_F的Child Network由伯努利分布中采样得到

尽管方式简单,我们从理论上证明(详细见原论文)这种方法可以有效提高模型更新量的方差,有利于模型逃离局部最优点,最终收敛于一个相对比较平坦的损失曲面上,从而提高模型的泛化能力。

任务相关算法Child-Tuning_D

然而对于下游任务无关微调算法Child-Tuning_F,也有一个缺点,就是它对于不同的下游任务的策略都是一样的,对于模型中的不同参数也都平等对待。为此,我们提出了一个任务相关的Child-Tuning_D (D for Task-Driven ),让选取Child Network的策略能够针对不同的下游任务自适应地进行调整,选择出与下游任务最相关最重要的参数来充当Child Network。

具体的,我们引入Fisher Information Matrix(FIM)[2] 来估计每个参数对于下游任务的重要性程度,并与前人工作一致近似采用FIM的对角矩阵(即假设参数之间互相独立)来计算各个参数相对下游任务的重要性分数[3],之后选择分数最高的那部分参数作为我们的Child-Network。


Child-Tuning:简单有效的微调涨点方法_算法_05

▲图3: Child-Tuning_D通过计算参数的Fisher Information确定Child Network

尽管Child-Tuning_D拥有感知下游任务特性的能力,但同时计算Fisher Information也降低了方法的效率,我们不可能在每次迭代的时候都重新计算估计一次Child Network。因此,我们采用的策略是在Fine-tuning一开始的时候识别出Child Network,并在接下来的迭代中都保持不变,也就是整个Fine-tuning过程只有这部分参数会被更新,我们的实验证明了这种近似手段同样可以取得不错的效果(我们曾经尝试过在每个epoch之后重新估计一次,但是效果反而不如自始自终保持一致的这种方式)。

Child-Tuning 实现仅需几行代码

总的来说,(在基于Adam优化器下的)Child-Tuning的伪代码如图4所示,最关键的部分在于红框内的内容,即发现Child Network,以及根据Child Network生成梯度掩模,从而实现仅对Child Network中的参数进行更新。


Child-Tuning:简单有效的微调涨点方法_大数据_06

▲图4: Child-Tuning的伪代码实现,主要内容在红框部分

具体到代码实现层面,就只需要在原来optimizer里加入简单几行代码:


Child-Tuning:简单有效的微调涨点方法_大数据_07

Child-Tuning代码已开源到阿里预训练体系AliceMind,关于实现的更多细节可以参看:
https://github.com/alibaba/AliceMind/tree/main/ChildTuning。

实验结果

我们做的实验主要探究了微调后模型的效果和泛化性能(更多有趣实验可以参见论文:https://arxiv.org/pdf/2109.05687.pdf):

下游任务效果

我们选取了BERT-large, XLNet-large,RoBERTa-large和ELECTRA-large四个不同的预训练模型,并在四个GLUE基准集上的任务,即CoLA,RTE,MRPC跟STS-B上进行实验。从下表中可以看到,相比传统微调算法(Vanilla Fine-tuning),使用Child-Tuning的两个不同版本(Task-Free和Task-Driven)都能带来提高,BERT平均提升+1.5,ELETRA平均提升+8.6


Child-Tuning:简单有效的微调涨点方法_神经网络_08

微调后模型的泛化性能

我们通过两种不同的方式来探究模型的泛化能力域迁移实验(Domain Transfer)和任务迁移实验(Task Transfer),如果模型的泛化能力更好,产生的编码表示更具有泛化性,那么在相应的迁移实验里边将会在目标任务中取得更好的效果。

对于域迁移实验(Domain Transfer),我们在一个NLI数据集上Fine-tune模型,之后直接将其在其他不同的NLI数据集上进行测试。下表展现的是在源数据集MNLI跟SNLI(为模拟少样本情况,均降采样到5k)迁移到其他目标数据集上的结果。可以看到,相比Vanilla Fine-tuning,Child-Tuning在目标数据集上都拥有更好的效果,这说明了使用Child-Tuning能够有效提高模型泛化能力,防止在源数据集上过拟合。


Child-Tuning:简单有效的微调涨点方法_python_09

类似地我们还进行了任务迁移实验(Task Transfer),即在一个源任务上进行Fine-tune,之后将预训练模型的参数冻结住,并迁移到另一个目标任务上,仅仅Fine-tune与目标任务相关的最顶层的线性分类器。下图展示了在以MRPC为源任务,迁移到CoLA,STS-B,QNLI和QQP任务上的实验结果,Child-Tuning相比Vanilla Fine-tuning在任务迁移实验上同样具有明显的优势,说明模型通过Child-Tuning的方法有效提高了泛化能力。


Child-Tuning:简单有效的微调涨点方法_计算机视觉_10

Child-Tuning:简单有效的微调涨点方法_计算机视觉_11

 

Child-Tuning:简单有效的微调涨点方法_python_12

[1] Fine-Tuning Pretrained Language Models: Weight Initializations, Data Orders, and Early Stopping, Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi, Noah Smith.

[2] Ranking the Parameters of Deep Neural Networks Using the Fisher Information, Ming Tu, Visar Berisha, Martin Woolf, Jae-sun Seo, Yu Cao, ICASSP'16.

[3] Overcoming Catastrophic Forgetting in Neural Networks, James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Kumaran, Raia Hadsell.

[4] Parameter-Efficient Transfer Learning for NLP, Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea Gesmundo, Mona Attariyan, Sylvain Gelly, ICML'19.

[5] Parameter-Efficient Transfer Learning with Diff Pruning, Demi Guo, Alexander M. Rush, Yoon Kim, ACL'21.