译者:bdqfork

作者: Robert Guthrie

深度学习构建模块:仿射映射, 非线性函数以及目标函数

深度学习表现为使用更高级的方法将线性函数和非线性函数进行组合。非线性函数的引入使得训练出来的模型更加强大。在本节中,我们将学习这些核心组件,建立目标函数,并理解模型是如何构建的。

仿射映射

深度学习的核心组件之一是仿射映射,仿射映射是一个关于矩阵A和向量xb的*f(x)*函数,如下所示:

PyTorch 1.0 中文官方教程:使用PyTorch进行深度学习_线性代数

需要训练的参数就是该公式中的Ab

PyTorch以及大多数的深度学习框架所做的事情都与传统的线性代数有些不同。它的映射输入是行而不是列。也就是说,下面代码输出的第i行是输入的第i行进行A变换,并加上偏移项的结果。看下面的例子:

# Author: Robert Guthrie

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

torch.manual_seed(1)

阅读全文/改进本文