#include <stdio.h>
#include <stdlib.h>
#include <deque>
#include <string>
#include <string.h>
#include <pthread.h>
#include <signal.h>
#include <assert.h>
#include "clock.h"
std::deque<std::string> task_queue;
pthread_mutex_t g_mutex;
pthread_cond_t g_cond;
FILE* g_fp = NULL;
pthread_mutex_t g_fp_mutex;
bool g_stop = false;
bool g_read_th_run = true;
bool g_proc_th_run1 = true;
bool g_proc_th_run2 = true;
bool g_proc_th_run3 = true;
bool g_proc_th_run4 = true;
void* read_func(void* obj);
void* proc_func(void* obj);
void cleanup_handler(void* obj);
void int_handler(int no)
{
fprintf(stdout, "Bye!\n");
g_stop = true;
}
int main(int argc, char* argv[])
{
if (argc < 2)
{
abort();
return -1;
}
signal(SIGINT, int_handler);
g_fp = fopen("result", "w");
pthread_mutex_init(&g_fp_mutex, NULL);
pthread_mutex_init(&g_mutex, NULL);
pthread_cond_init(&g_cond, NULL);
pthread_t tid = 0;
pthread_t tid1 = 0;
pthread_t tid2 = 0;
pthread_t tid3 = 0;
pthread_t tid4 = 0;
pthread_create(&tid, NULL, read_func, argv[1]);
pthread_create(&tid1, NULL, proc_func, &g_proc_th_run1);
pthread_create(&tid2, NULL, proc_func, &g_proc_th_run2);
pthread_create(&tid3, NULL, proc_func, &g_proc_th_run3);
pthread_create(&tid4, NULL, proc_func, &g_proc_th_run4);
while (!g_stop)
{
sleep(30);
};
g_read_th_run = false;
g_proc_th_run1 = false;
g_proc_th_run2 = false;
g_proc_th_run3 = false;
g_proc_th_run4 = false;
pthread_mutex_lock(&g_mutex);
pthread_cond_broadcast(&g_cond);
pthread_mutex_unlock(&g_mutex);
//assert(!pthread_join(tid, NULL));
assert(!pthread_join(tid1, NULL));
assert(!pthread_join(tid2, NULL));
assert(!pthread_join(tid3, NULL));
assert(!pthread_join(tid4, NULL));
fclose(g_fp);
return 0;
}
void* read_func(void* obj)
{
pthread_detach(pthread_self());
//pthread_cleanup_push(cleanup_handler, NULL);
const char* file = (const char*)(obj);
FILE* fp = fopen(file, "r");
if (!fp) return NULL;
char* line = new char [1024];
size_t len = 1024;
while (!feof(fp))
{
getline(&line, &len, fp);
if (len)
{
pthread_mutex_lock(&g_mutex);
task_queue.push_back(line);
pthread_cond_signal(&g_cond);
pthread_mutex_unlock(&g_mutex);
memset(line, 0, 1024);
}
};
fprintf(stdout, "read thread quit!\n");
free(line);
fclose(fp);
return NULL;
}
void* proc_func(void* obj)
{
//pthread_cleanup_push(cleanup_handler, NULL);
bool& running = *(bool*)(obj);
while (running)
{
pthread_mutex_lock(&g_mutex);
if (task_queue.empty())
{
pthread_cond_wait(&g_cond, &g_mutex);
}
if (task_queue.size())
{
pthread_mutex_lock(&g_fp_mutex);
std::string& s = task_queue.front();
fwrite(s.c_str(), s.size(), 1, g_fp);
task_queue.pop_front();
pthread_mutex_unlock(&g_fp_mutex);
}
pthread_mutex_unlock(&g_mutex);
}
fprintf(stdout, "proc thread quit!\n");
return NULL;
}
void cleanup_handler(void* obj)
{
fprintf(stdout, "%d: call cleanup_handler\n", (int)pthread_self());
}
多线程同步
原创
©著作权归作者所有:来自51CTO博客作者lxsbupt的原创作品,请联系作者获取转载授权,否则将追究法律责任
提问和评论都可以,用心的回复会被更多人看到
评论
发布评论
相关文章
-
java 同步 多线程 实例 java多线程并发同步
多线程线程:类似执行一个命令,多线程:并发执行多条命令。多线程的优点: 1.充分利用cpu的性能。 2.提高系统性能。 3.同一时刻处理可以处理不同的命令线程同步即当有一个线程在对内存进行操作时,其他线程都不可以对这个内存地址进行操作,直到该线程完成操作,为什么需要它呢?1.多线程会出现线程安全问题,线程同步可以有效的保证线程安全。 2.当主
java 同步 多线程 实例 CyclicBarrier CountDownLatch System 线程同步