1. 零向量
零向量每一维都是零,大小为零没有方向
2. 向量的大小(模)
1.向量的模的概念
所谓的向量的模就是指向量的大小或者说长度。
2.向量的模的运算法则
在线性代数中,向量的模通常用在向量两边各加两条竖线的方式表示,如||v||,表示向量v的模。向量的模的计算公式如下:
对于2D,3D向量的如下
3. 标准化向量
对于许多向量,我们不需要关注它的大小只需要关心它的方向,这种情况下使用单位向量将会非常方便。单位向量就是大小为1的向量,单位向量也被称为标准化向量。
对于任意非零向量v,都能计算出一个和v方向相同的单位向量n,这个过程被称作为向量的“标准化”,要标准化向量,将向量除以它的大小(模)即可。
4.向量加减法
1.向量的加法和减法的前提
如果两个向量的维数相同,那么他们能够相加减,运算结果的向量的维数和原向量相同。
2.运算法则
向量的加法等于两个向量的分量相加,向量的减法相当于加上一个负向量。
5. 向量点乘
定义
向量点乘又被称为内积,即每个维度成绩的和。
几何解释
点乘的结果描述了两个向量的相似程度,点乘结果越大,两个向量月相似。
点乘等于向量大小与向量夹角的cos值的乘积;
向量投影
投影
法线
6. 向量的叉乘
1.基本概念
两个向量的叉乘得到是向量,且这个向量垂直于原来的两个向量。向量的叉乘只可以运用在3D向量中。
2.数学运算公式
3.几何运算公式
向量叉乘的结果向量的长度与两个向量的夹角有关,且成正弦函数关系,如果向量a和b是平行关系,则叉乘的结果为0,因为sin0为0
4.向量叉乘方向的判断 向量的叉乘是通过右手定则来判断结果向量的方向的。伸出右手,四指弯曲符合向量叉乘的顺序,那么大拇指就是叉乘后结果向量的方向。如下图axb,右手四指弯曲方向从a到b,大拇指方向向上就是叉乘结果向量的方向。