NOTE: This documents my investigation into assembly language programming on the ARM processor running my ​​SheevaPlug​​. This runs ​​Debian GNU/Linux​​. I use the ​​GNU​​ assembler, gas, the GNU linker, ld and the GNU debugger, gdb.



++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++


​Description of problem​


If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23.

Find the sum of all the multiples of 3 or 5 below 1000.

001.s


.syntax unified

.equ max3start,999
.equ max5start,995

number .req r4
matched .req r5
sum .req r6
max3 .req r7
max5 .req r8

.section .rodata
.align 2
string:
.asciz "%d\n"
.text
.align 2
.global main
.type main, %function
main:
stmfd sp!, {r4-r8, lr}
ldr max5, =max5start
ldr max3, =max3start
ldr number, =max3start @ start at 1000 - 1 ; numbers < 1000
mov matched, 0
mov sum, 0
loop:
cmp number, max3
bne test5

# matched a multiple of 3 - decrement max3, add to sum and set matched to 1
mov matched, 1
add sum, sum, number
subs max3, max3, 3

test5:
cmp number, max5
bne last

# matched a multiple of 5 - decrement max5, add to sum and set matched to 1
subs max5, max5, 5
cmp matched, 1 @ have we already added it?
addne sum, sum, number @ if not add it to the total

last:
# decrement number and reset matched and loop
mov matched, 0
subs number, number, 1
bne loop

mov r1, sum
ldr r0, =string @ store address of start of string to r0
bl printf

mov r0, 0
ldmfd sp!, {r4-r8, pc}
mov r7, 1 @ set r7 to 1 - the syscall for exit
swi 0 @ then invoke the syscall from linux

​Description of problem​


Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be:

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms.

002.s


.syntax unified

.equ maxfib,4000000

previous .req r4
current .req r5
next .req r6
sum .req r7
max .req r8
tmp .req r9

.section .rodata
.align 2
fibstring:
.asciz "fib is %d\n"
sumstring:
.asciz "%d\n"

.text
.align 2
.global main
.type main, %function
main:
stmfd sp!, {r4-r9, lr}
ldr max, =maxfib
mov previous, 1
mov current, 1
mov sum, 0

# mov r1, current
# ldr r0, =fibstring @ store address of start of string to r0
# bl printf
loop:
cmp current, max
bgt last

# mov r1, current
# ldr r0, =fibstring @ store address of start of string to r0
# bl printf

add next, current, previous

movs tmp, current, lsr 1 @ set carry flag from lsr - for the odd-valued terms
addcc sum, sum, current @ these are even-valued fibonacci (when cc is true)

mov previous, current
mov current, next
b loop

last:
mov r1, sum
ldr r0, =sumstring @ store address of start of string to r0
bl printf

mov r0, 0
ldmfd sp!, {r4-r9, pc}
mov r7, 1 @ set r7 to 1 - the syscall for exit
swi 0 @ then invoke the syscall from linux

​Description of problem​


The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.

Find the sum of all the primes below two million.

010.s


.syntax unified
.equ word,4
.equ logword,2

.equ limit,2000000
.equ numprimes4,595732

sum_hi .req r4
sum_lo .req r5
numprimes .req r6
primes_ptr .req r7
number .req r8
limit .req r9

.align 2

.section .bss
.lcomm primes_vector,numprimes4

.section .rodata
.align 2
llustring:
.asciz "%llu\n"
primestring:
.asciz "num %d primality is %d\n"

.text
.align 8
.global main
.type main, %function
main:
stmfd sp!, {r4-r9, fp, lr}

ldr primes_ptr, =primes_vector
mov numprimes, 1
mov number, 2
strb number, [primes_ptr]
ldr limit, =limit
mov sum_hi, 0
mov sum_lo, 2
mov number, 3
loop:
cmp number, limit
bge printme

mov r0, number
ldr r1, =primes_vector
mov r2, numprimes
bl prime_vector
teq r0, 1
bne nexti
str number, [primes_ptr, numprimes, lsl 2]
add numprimes, numprimes, 1
adds sum_lo, sum_lo, number
adc sum_hi, sum_hi, 0
nexti:
add number, number, 2
b loop
printme:
mov r2, sum_lo
mov r3, sum_hi
ldr r0, =llustring @ store address of start of string to r0
bl printf

mov r0, 0
ldmfd sp!, {r4-r9, fp, pc}
mov r7, 1 @ set r7 to 1 - the syscall for exit
swi 0 @ then invoke the syscall from linux

​Description of problem​


The prime factors of 13195 are 5, 7, 13 and 29.

What is the largest prime factor of the number 600851475143 ?

003.s


.syntax unified

@ 600851475143 is 8BE589EAC7 in hex
@ root 600851475143 is 775146.099

.align 4
.equ numhi,139 @ 0x8b
.equ numlo,3851020999 @ 0xe589eac7
.equ root,775147

num_hi .req r4
num_lo .req r5
maxdiv .req r6
n .req r7
tmp .req r8

.section .rodata
.align 2
resstring:
.asciz "%d\n"
.text
.align 2
.global main
.type main, %function
main:
stmfd sp!, {r4-r8, lr}

mov maxdiv, 0
ldr n, =root
ldr num_lo, =numlo
ldr num_hi, =numhi
loop:
ldr r0, =numlo
ldr r1, =numhi
mov r2, n
mov r3, 0
bl long_divide
mov tmp, r0
teq r2, 0
bne nextn
teq r3, 0
bne nextn
bl isprime
teq r0, 1
bne testn
cmp maxdiv, tmp
movlt maxdiv, tmp
testn:
mov r0, n
bl isprime
teq r0, 1
bne nextn
cmp maxdiv, n
movlt maxdiv, n
nextn:
sub n, n, 2
teq n, 1
beq printme
b loop
printme:
mov r1, maxdiv
ldr r0, =resstring @ store address of start of string to r0
bl printf

mov r0, 0
ldmfd sp!, {r4-r8, pc}
mov r7, 1 @ set r7 to 1 - the syscall for exit
swi 0 @ then invoke the syscall from linux
isprime.s


.syntax unified

# this subroutine returns 1 if the passed number is prime; 0 if not

# inputs
# r0 - integer to test

# outputs
# r0 - prime boolean

number .req r4
divisor .req r5
tmp .req r6

.global isprime
.type isprime, %function
.text
.align 2

isprime:
stmfd sp!, {r4-r6, lr}
mov number, r0
ands tmp, number, 1
bne odd
mov r0, 0
cmp number, 2 @ 2 is the only prime even number
bne last
mov r0, 1
b last
odd:
mov divisor, 3
cmp number, 8
bgt big
mov r0, 1
cmp number, 1 @ 1 is the only odd number < 8 not prime
bne last
mov r0, 0
b last
big:
mov r0, number
mov r1, divisor
bl divide
teq r1, 0
beq factor
add divisor, divisor, 2
mul tmp, divisor, divisor
subs tmp, tmp, number
ble big
mov r0, 1
b last
factor:
mov r0, 0
last:
ldmfd sp!, {r4-r6, pc}

​Description of problem​


A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 99.

Find the largest palindrome made from the product of two 3-digit numbers.

004.s


.syntax unified

.equ max3,999
.equ min3,100
.equ maxdigits,6

i .req r4
j .req r5
product .req r6
maxp .req r7
mini .req r8
minj .req r9
maxj .req r10

.section .rodata
.align 2
sumstring:
.asciz "%d\n"

.text
.align 2
.global main
.type main, %function
main:
stmfd sp!, {r4-r10, lr}
ldr i, =max3
ldr mini, =min3
ldr maxj, =max3
ldr minj, =min3
iloop:
mov j, maxj
jloop:
mul product, i, j

mov r0, product
bl is_palindromic
cmp r0, #1
bne next
cmp product, maxp
ble next
mov maxp, product
mov r0, product
bl divide_by_10 @ divides r0 by 10
bl divide_by_10 @ so 3 consecutive calls
bl divide_by_10 @ will divide by 1000
mov minj, r0
mov minj, r0

next:
subs j, j, 1
cmp j, minj
bgt jloop

subs i, i, 1
mov maxj, i
cmp i, mini
bgt iloop

last:
mov r1, maxp
ldr r0, =sumstring @ store address of start of string to r0
bl printf

mov r0, 0
ldmfd sp!, {r4-r10, pc}
mov r7, 1 @ set r7 to 1 - the syscall for exit
swi 0 @ then invoke the syscall from linux
ispalindromic.s


.syntax unified

.equ datum_size, 1
.equ digits, 6

# this subroutine returns 1 if the passed 6-digit number is palindromic; 0 if not
# the number is a product of 2 3-digit numbers so we assume the product has 6 digits
#
# inputs
# r0 - integer to test
#
# outputs
# r0 - palindromic boolean
#
# local
#
left .req r4
right .req r5
counter .req r6
buffer_address .req r7
running .req r8
tmp .req r9
#
.section .bss
.lcomm buffer, 6
#
.global is_palindromic
.type is_palindromic, %function
.global get_digits
.type get_digits, %function
.text
.align 2
#
is_palindromic:
stmfd sp!, {r4-r9, lr}
bl get_digits
mov counter, 3
ldr buffer_address, =buffer
ip_last:
sub left, buffer_address, counter
ldrb tmp, [left, 3]
add right, buffer_address, counter
ldrb running, [right, 2]
teq tmp, running
bne no
subs counter, counter, 1
bgt ip_last
mov r0, 1
b last
no:
mov r0, 0
last:
ldmfd sp!, {r4-r9, pc}
#
get_digits:
stmfd sp!, {r7-r8, lr}
ldr running, =digits
ldr buffer_address, =buffer
gd_loop:
subs running, running, 1
bl divide_by_10_remainder
strb r1, [buffer_address], #datum_size
bgt gd_loop

gd_last:
ldmfd sp!, {r7-r8, pc}

​Description of problem​


The sum of the squares of the first ten natural numbers is,


12 + 22 + ... + 102 = 385


The square of the sum of the first ten natural numbers is,


(1 + 2 + ... + 10)2 = 552 = 3025


Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 385 = 2640.

Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.

006.s


.syntax unified

.equ limit,100

number .req r4
sumsq .req r5
sqsum .req r6
tmp .req r7

.section .rodata
.align 2
string:
.asciz "%d\n"
.text
.align 2
.global main
.type main, %function
main:
stmfd sp!, {r4-r7, lr}
mov sqsum, 0
mov sumsq, 0
ldr number, =limit
loop:
mul tmp, number, number
add sqsum, sqsum, tmp
# decrement number and loop or exit
subs number, number, 1
beq end_loop
b loop
end_loop:
ldr number, =limit
add number, number, 1
ldr sumsq, =limit
mul sumsq, sumsq, number
lsr sumsq, sumsq, 1
mul sumsq, sumsq, sumsq
last:
sub tmp, sumsq, sqsum
mov r1, tmp
ldr r0, =string @ store address of start of string to r0
bl printf

mov r0, 0
ldmfd sp!, {r4-r7, pc}
mov r7, 1 @ set r7 to 1 - the syscall for exit
swi 0 @ then invoke the syscall from linux
test_ispalindromic.s


.equ nonpalindromic,123456
.equ palindromic1,123321
.equ palindromic2,815518
.syntax unified

number .req r4
palindromicflag .req r5

.macro num_is_palindromic a
ldr number, =\a
mov r0, number
bl is_palindromic
mov palindromicflag, r0

mov r2, palindromicflag
mov r1, number
ldr r0, =palindromicstring
bl printf
.endm

.section .rodata
.align 2
palindromicstring:
.asciz "num %d palindromicity is %d\n"

.text
.align 2
.global main
.type main, %function
main:
num_is_palindromic nonpalindromic
num_is_palindromic palindromic1
num_is_palindromic palindromic2

mov r0, 0
mov r7, 1 @ set r7 to 1 - the syscall for exit
swi 0 @ then invoke the syscall from linux
test_isprime.s


.syntax unified

number .req r4
primeflag .req r5

.macro num_is_prime a
mov number, \a
mov r0, number
bl isprime
mov primeflag, r0

mov r2, primeflag
mov r1, number
ldr r0, =primestring
bl printf
.endm

.section .rodata
.align 2
primestring:
.asciz "num %d primality is %d\n"

.text
.align 2
.global main
.type main, %function
main:
num_is_prime 1
num_is_prime 2
num_is_prime 3
num_is_prime 4
num_is_prime 5
num_is_prime 7
num_is_prime 9
num_is_prime 11
num_is_prime 13
num_is_prime 15
num_is_prime 17
num_is_prime 19
num_is_prime 20
num_is_prime 21
num_is_prime 23
num_is_prime 25
num_is_prime 27
num_is_prime 29
ldr number, =716151937
mov r0, number
bl isprime
mov primeflag, r0

mov r2, primeflag
mov r1, number
ldr r0, =primestring
bl printf

mov r0, 0
mov r7, 1 @ set r7 to 1 - the syscall for exit
swi 0 @ then invoke the syscall from linux
divide_by_10.s


.syntax unified

# this subroutine divides the passed number by 10 and
# returns the dividend and remainder
#
# The const -0x33333333 is 0xccccccd (2s complement)
# 0xcccccccc is 12/15th (0.8) of 0xffffffff and we use this as
# a multiplier, then shift right by 3 bits (divide by 8) to
# effect a multiplication by 0.1
#
# We multiply this number by 10 (multiply by 4, add 1 then multiply by 2)
# and subtract from the original number to give the remainder on division
# by 10.
#
# inputs
# r0 - integer to divide
#
# outputs
# r0 - the dividend
# r1 - the remainder

.equ const,-0x33333333
#.equ const,0xcccccccd
.text
.align 2
.global divide_by_10_remainder
.type divide_by_10_remainder, %function
divide_by_10_remainder:
stmfd sp!, {lr}
cmp r0, 10
blt rsmall
ldr r1, =const
umull r2, r3, r1, r0
mov r2, r3, lsr #3 @ r2 = r3 / 8 == r0 / 10
mov r3, r2 @ r3 = r2
mov r3, r3, asl #2 @ r3 = 4 * r3
add r3, r3, r2 @ r3 = r3 + r2
mov r3, r3, asl #1 @ r3 = 2 * r3
rsb r3, r3, r0 @ r3 = r0 - r3 = r0 - 10*int(r0/10)
mov r1, r3 @ the remainder
mov r0, r2 @ the dividend
b rlast
rsmall:
mov r1, r0
mov r0, 0
rlast:
ldmfd sp!, {pc}


# this subroutine divides the passed number by 10
# returns the dividend
#
# The const -0x33333333 is 0xccccccd (2s complement)
# 0xcccccccc is 12/15th (0.8) of 0xffffffff and we use this as
# a multiplier, then shift right by 3 bits (divide by 8) to
# effect a multiplication by 0.1
#
# We multiply this number by 10 (multiply by 4, add 1 then multiply by 2)
#
# inputs
# r0 - integer to divide
#
# outputs
# r0 - the dividend

.align 2
.global divide_by_10
.type divide_by_10, %function
divide_by_10:
stmfd sp!, {lr}
cmp r0, 10
blt small
ldr r1, =const
umull r2, r3, r1, r0
mov r2, r3, lsr #3 @ r2 = r3 / 8 == r0 / 10
mov r0, r2 @ the dividend
b last
small:
mov r0, 0
last:
ldmfd sp!, {pc}

​Description of problem​


2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder.

What is the smallest positive number that is evenly divisible by all of the numbers from 1 to 20?

005.s


.syntax unified

.equ limit,20

.align 4

@ algorithm
@ initialise try_products to 1
@ foreach number > 1 and <= limit
@ test if it is prime
@ if try_products is set, then multiply the number by itself
@ while it does not exceed limit, then multiply the total by
@ this product. if the number squared exceeds the limit, then
@ set try_product to 0.
@ if try_products is 0 and the number is prime, then multiply
@ the total by number.

try_product .req r4
number .req r5
last .req r6
total .req r7
tmp .req r8

.section .rodata
.align 2
resstring:
.asciz "%d\n"
.text
.align 2
.global main
.type main, %function
main:
stmfd sp!, {r4-r8, lr}

mov total, 1
mov try_product, 1
mov number, 2
loop:
mov r0, number
bl isprime20
cmp r0, 1
bne nexti

cmp try_product, 1
bne no_product
mul tmp, number, number
cmp tmp, limit
ble prod_start
mov try_product, 0
b no_product
prod_start:
mov tmp, number
mov last, tmp
prod_loop:
cmp tmp, limit
bgt last_mul
mov last, tmp
mul tmp, tmp, number
b prod_loop
last_mul:
mul total, total, last
no_product:
cmp try_product, 0
bne nexti
mul total, total, number
nexti:
cmp number, limit
beq printme
add number, number, 1
b loop

printme:
mov r1, total
ldr r0, =resstring @ store address of start of string to r0
bl printf

mov r0, 0
ldmfd sp!, {r4-r8, pc}
mov r7, 1 @ set r7 to 1 - the syscall for exit
swi 0 @ then invoke the syscall from linux

# this subroutine returns 1 if the passed number (<= 20) is prime; 0 if not
#
# inputs
# r0 - integer to test
#
# outputs
# r0 - prime boolean

.global isprime20
.type isprime20, %function
.text
.align 2

isprime20:
stmfd sp!, {lr}
mov r1, r0
ands r2, r1, 1
bne odd
mov r0, 0
cmp r1, 2 @ 2 is the only prime even r1
bne last
mov r0, 1
b last
odd:
mov r0, 1
cmp r1, 9
bne test15
mov r0, 0
b last
test15:
cmp r1, 15
bne last
mov r0, 0
last:
ldmfd sp!, {pc}
test_divide_by_10.s


.equ num0,7830
.equ num3,783
.equ num7,7847
.equ num8,78
.equ num9,7

.syntax unified

.macro dividend num
ldr r1, =\num
ldr r0, =numstring
bl printf

ldr r0, =\num
bl divide_by_10
mov r1, r0
ldr r0, =dividendstring
bl printf
.endm

.macro remainder num
ldr r1, =\num
ldr r0, =numstring
bl printf

ldr r0, =\num
bl divide_by_10_remainder
mov r2, r0
ldr r0, =remainderstring
bl printf
.endm

.section .rodata
.align 2
numstring:
.asciz "num is %d\n"
dividendstring:
.asciz "dividend is %d\n"
remainderstring:
.asciz "remainder is %d and dividend is %d\n"

.text
.align 2
.global main
.type main, %function
main:
remainder num0
remainder num7
remainder num3
remainder num8
remainder num9

dividend num0
dividend num7
dividend num3
dividend num8
dividend num9

mov r0, 0
mov r7, 1 @ set r7 to 1 - the syscall for exit
swi 0 @ then invoke the syscall from linux

​Description of problem​


By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13.

What is the 10 001st prime number?

007.s


.syntax unified

.equ limit,10000
.equ limit4,40000

.align 4

number .req r4
count .req r5
numprimes .req r6
primes_ptr .req r7

.section .bss
.lcomm primes_vector,limit4

.section .rodata
.align 2
resstring:
.asciz "%d\n"
.text
.align 2
.global main
.type main, %function
main:
stmfd sp!, {r4-r7, lr}

ldr primes_ptr, =primes_vector
mov numprimes, 1
mov number, 2
strb number, [primes_ptr]

ldr count, =limit
mov number, 3 @ 2 is the first prime
loop:
mov r0, number
ldr r1, =primes_vector
mov r2, numprimes
bl prime_vector
teq r0, 1
bne nexti
str number, [primes_ptr, numprimes, lsl 2]
add numprimes, numprimes, 1
subs count, count, 1
beq printme
nexti:
add number, number, 2
b loop

printme:
mov r1, number
ldr r0, =resstring @ store address of start of string to r0
bl printf

mov r0, 0
ldmfd sp!, {r4-r7, pc}
mov r7, 1 @ set r7 to 1 - the syscall for exit
swi 0 @ then invoke the syscall from linux

​Description of problem​


Find the greatest product of five consecutive digits in the 1000-digit number.

73167176531330624919225119674426574742355349194934

96983520312774506326239578318016984801869478851843

85861560789112949495459501737958331952853208805511

12540698747158523863050715693290963295227443043557

66896648950445244523161731856403098711121722383113

62229893423380308135336276614282806444486645238749

30358907296290491560440772390713810515859307960866

70172427121883998797908792274921901699720888093776

65727333001053367881220235421809751254540594752243

52584907711670556013604839586446706324415722155397

53697817977846174064955149290862569321978468622482

83972241375657056057490261407972968652414535100474

82166370484403199890008895243450658541227588666881

16427171479924442928230863465674813919123162824586

17866458359124566529476545682848912883142607690042

24219022671055626321111109370544217506941658960408

07198403850962455444362981230987879927244284909188

84580156166097919133875499200524063689912560717606

05886116467109405077541002256983155200055935729725

71636269561882670428252483600823257530420752963450

008.s


.syntax unified

.equ limit,10000
.equ outer, 996
.equ inner, 5

.align 4

address .req r4
thisbyte .req r5
icounter .req r6
ocounter .req r7
maxv .req r8
tmp .req r9

.section .data
buffer:
.byte 7, 3, 1, 6, 7, 1, 7, 6, 5, 3, 1, 3, 3, 0, 6, 2, 4, 9, 1, 9, 2, 2
.byte 5, 1, 1, 9, 6, 7, 4, 4, 2, 6, 5, 7, 4, 7, 4, 2, 3, 5, 5, 3, 4, 9, 1, 9
.byte 4, 9, 3, 4, 9, 6, 9, 8, 3, 5, 2, 0, 3, 1, 2, 7, 7, 4, 5, 0, 6, 3, 2, 6
.byte 2, 3, 9, 5, 7, 8, 3, 1, 8, 0, 1, 6, 9, 8, 4, 8, 0, 1, 8, 6, 9, 4, 7, 8
.byte 8, 5, 1, 8, 4, 3, 8, 5, 8, 6, 1, 5, 6, 0, 7, 8, 9, 1, 1, 2, 9, 4, 9, 4
.byte 9, 5, 4, 5, 9, 5, 0, 1, 7, 3, 7, 9, 5, 8, 3, 3, 1, 9, 5, 2, 8, 5, 3, 2
.byte 0, 8, 8, 0, 5, 5, 1, 1, 1, 2, 5, 4, 0, 6, 9, 8, 7, 4, 7, 1, 5, 8, 5, 2
.byte 3, 8, 6, 3, 0, 5, 0, 7, 1, 5, 6, 9, 3, 2, 9, 0, 9, 6, 3, 2, 9, 5, 2, 2
.byte 7, 4, 4, 3, 0, 4, 3, 5, 5, 7, 6, 6, 8, 9, 6, 6, 4, 8, 9, 5, 0, 4, 4, 5
.byte 2, 4, 4, 5, 2, 3, 1, 6, 1, 7, 3, 1, 8, 5, 6, 4, 0, 3, 0, 9, 8, 7, 1, 1
.byte 1, 2, 1, 7, 2, 2, 3, 8, 3, 1, 1, 3, 6, 2, 2, 2, 9, 8, 9, 3, 4, 2, 3, 3
.byte 8, 0, 3, 0, 8, 1, 3, 5, 3, 3, 6, 2, 7, 6, 6, 1, 4, 2, 8, 2, 8, 0, 6, 4
.byte 4, 4, 4, 8, 6, 6, 4, 5, 2, 3, 8, 7, 4, 9, 3, 0, 3, 5, 8, 9, 0, 7, 2, 9
.byte 6, 2, 9, 0, 4, 9, 1, 5, 6, 0, 4, 4, 0, 7, 7, 2, 3, 9, 0, 7, 1, 3, 8, 1
.byte 0, 5, 1, 5, 8, 5, 9, 3, 0, 7, 9, 6, 0, 8, 6, 6, 7, 0, 1, 7, 2, 4, 2, 7
.byte 1, 2, 1, 8, 8, 3, 9, 9, 8, 7, 9, 7, 9, 0, 8, 7, 9, 2, 2, 7, 4, 9, 2, 1
.byte 9, 0, 1, 6, 9, 9, 7, 2, 0, 8, 8, 8, 0, 9, 3, 7, 7, 6, 6, 5, 7, 2, 7, 3
.byte 3, 3, 0, 0, 1, 0, 5, 3, 3, 6, 7, 8, 8, 1, 2, 2, 0, 2, 3, 5, 4, 2, 1, 8
.byte 0, 9, 7, 5, 1, 2, 5, 4, 5, 4, 0, 5, 9, 4, 7, 5, 2, 2, 4, 3, 5, 2, 5, 8
.byte 4, 9, 0, 7, 7, 1, 1, 6, 7, 0, 5, 5, 6, 0, 1, 3, 6, 0, 4, 8, 3, 9, 5, 8
.byte 6, 4, 4, 6, 7, 0, 6, 3, 2, 4, 4, 1, 5, 7, 2, 2, 1, 5, 5, 3, 9, 7, 5, 3
.byte 6, 9, 7, 8, 1, 7, 9, 7, 7, 8, 4, 6, 1, 7, 4, 0, 6, 4, 9, 5, 5, 1, 4, 9
.byte 2, 9, 0, 8, 6, 2, 5, 6, 9, 3, 2, 1, 9, 7, 8, 4, 6, 8, 6, 2, 2, 4, 8, 2
.byte 8, 3, 9, 7, 2, 2, 4, 1, 3, 7, 5, 6, 5, 7, 0, 5, 6, 0, 5, 7, 4, 9, 0, 2
.byte 6, 1, 4, 0, 7, 9, 7, 2, 9, 6, 8, 6, 5, 2, 4, 1, 4, 5, 3, 5, 1, 0, 0, 4
.byte 7, 4, 8, 2, 1, 6, 6, 3, 7, 0, 4, 8, 4, 4, 0, 3, 1, 9, 9, 8, 9, 0, 0, 0
.byte 8, 8, 9, 5, 2, 4, 3, 4, 5, 0, 6, 5, 8, 5, 4, 1, 2, 2, 7, 5, 8, 8, 6, 6
.byte 6, 8, 8, 1, 1, 6, 4, 2, 7, 1, 7, 1, 4, 7, 9, 9, 2, 4, 4, 4, 2, 9, 2, 8
.byte 2, 3, 0, 8, 6, 3, 4, 6, 5, 6, 7, 4, 8, 1, 3, 9, 1, 9, 1, 2, 3, 1, 6, 2
.byte 8, 2, 4, 5, 8, 6, 1, 7, 8, 6, 6, 4, 5, 8, 3, 5, 9, 1, 2, 4, 5, 6, 6, 5
.byte 2, 9, 4, 7, 6, 5, 4, 5, 6, 8, 2, 8, 4, 8, 9, 1, 2, 8, 8, 3, 1, 4, 2, 6
.byte 0, 7, 6, 9, 0, 0, 4, 2, 2, 4, 2, 1, 9, 0, 2, 2, 6, 7, 1, 0, 5, 5, 6, 2
.byte 6, 3, 2, 1, 1, 1, 1, 1, 0, 9, 3, 7, 0, 5, 4, 4, 2, 1, 7, 5, 0, 6, 9, 4
.byte 1, 6, 5, 8, 9, 6, 0, 4, 0, 8, 0, 7, 1, 9, 8, 4, 0, 3, 8, 5, 0, 9, 6, 2
.byte 4, 5, 5, 4, 4, 4, 3, 6, 2, 9, 8, 1, 2, 3, 0, 9, 8, 7, 8, 7, 9, 9, 2, 7
.byte 2, 4, 4, 2, 8, 4, 9, 0, 9, 1, 8, 8, 8, 4, 5, 8, 0, 1, 5, 6, 1, 6, 6, 0
.byte 9, 7, 9, 1, 9, 1, 3, 3, 8, 7, 5, 4, 9, 9, 2, 0, 0, 5, 2, 4, 0, 6, 3, 6
.byte 8, 9, 9, 1, 2, 5, 6, 0, 7, 1, 7, 6, 0, 6, 0, 5, 8, 8, 6, 1, 1, 6, 4, 6
.byte 7, 1, 0, 9, 4, 0, 5, 0, 7, 7, 5, 4, 1, 0, 0, 2, 2, 5, 6, 9, 8, 3, 1, 5
.byte 5, 2, 0, 0, 0, 5, 5, 9, 3, 5, 7, 2, 9, 7, 2, 5, 7, 1, 6, 3, 6, 2, 6, 9
.byte 5, 6, 1, 8, 8, 2, 6, 7, 0, 4, 2, 8, 2, 5, 2, 4, 8, 3, 6, 0, 0, 8, 2, 3
.byte 2, 5, 7, 5, 3, 0, 4, 2, 0, 7, 5, 2, 9, 6, 3, 4, 5, 0

.section .rodata
.align 2
resstring:
.asciz "%d\n"
.text
.align 2
.global main
.type main, %function
main:
stmfd sp!, {r4-r9, lr}
ldr address, =buffer
ldr ocounter, =outer
outer_start:
ldr icounter, =inner
mov tmp, #1
inner_start:
ldrb thisbyte, [address], 1
mul tmp, tmp, thisbyte
subs icounter, icounter, 1
bne inner_start
cmp maxv, tmp
movlt maxv, tmp
sub address, address, 4
subs ocounter, ocounter, 1
bne outer_start

printme:
mov r1, maxv
ldr r0, =resstring @ store address of start of string to r0
bl printf

mov r0, 0
ldmfd sp!, {r4-r9, pc}
mov r7, 1 @ set r7 to 1 - the syscall for exit
swi 0 @ then invoke the syscall from linux

​Description of problem​


A Pythagorean triplet is a set of three natural numbers, a a2 + b2 = c2


For example, 32 + 42 = 9 + 16 = 25 = 52.

There exists exactly one Pythagorean triplet for which a + b + c = 1000.

Find the product abc.