题目链接:

hdu 5441


题目大意:

有一个n个点的无向图,给出m条边的边权,给出q次询问,每次给出一个值,求用到所有边权不大于这个值的边的情况下,能够互相到达的点对的个数(自己到自己不算)


题目分析:

  • 首先我们对于边按照边权从小到大排序,对于询问按照值从小到大排序。
  • 枚举每次询问,从前到后扫描边,如果下一条边的边权大于当前的询问的值,那么停止,利用并查集记录每个联通块的点的个数。
  • 每次如果某两个联通块合并,那么最终结果就是增加了(num[1]+num[2])×(num[1]+num[2]-1) - num[1] × (num[1]-1) - num[2] ×(num[2]-1)
  • 复杂度O(m)

AC代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define MAX 20007

using namespace std;

int fa[MAX],num[MAX],t,n,m,q,pp[MAX];

struct Query
{
    int x,id;
    bool operator < ( const Query& a )const 
    {
        return x < a.x;
    }
}a[MAX];


struct Edge
{
    int u,v,w;
    bool operator < ( const Edge& a ) const 
    {
        return w < a.w;
    }
}e[MAX*5];

void init ( )
{
    for ( int i = 1 ; i <= n ; i++ )
    {
        num[i] = 1;
        fa[i] = i;
    }
}

int _find ( int x )
{
    return fa[x] == x? x : fa[x] = _find ( fa[x] );
}

void _union ( int x , int y )
{
    x = _find ( x );
    y = _find ( y );
    if ( y < x ) swap ( x , y );
    fa[y] = x;
    num[x] += num[y];
}

int main ( )
{
    scanf ( "%d" ,&t );
    while ( t-- )
    {
        int ans = 0;
        scanf ( "%d%d%d" , &n , &m , &q );
        init ( ); 
        for ( int i = 0 ; i < m ; i++ )
            scanf ( "%d%d%d" , &e[i].u , &e[i].v , &e[i].w );
        sort ( e , e+m );
        int j = 0;
        for ( int i = 0 ; i < q ; i++ )
        {
            a[i].id = i;
            scanf ( "%d" , &a[i].x );
        }
        sort ( a , a+q );
        for ( int i = 0 ; i < q ; i++ )
        {
            while ( j < m && e[j].w <= a[i].x )
            {
                int u = _find ( e[j].u );
                int v = _find ( e[j].v );
                j++;
                if ( u == v ) continue;
                ans += (num[u]+num[v])*(num[u]+num[v]-1)-num[u]*(num[u]-1) - num[v]*(num[v]-1);
                _union ( u , v );
            }
            pp[a[i].id] = ans;
        }
        for ( int i = 0 ; i < q ; i++ )
            printf ( "%d\n" , pp[i] );
    }
}