基于智谱大模型的城市管理官:英特尔LLM黑客松项目介绍 引言 在英特尔LLM黑客松大赛中,一个引人注目的项目吸引了众多目光——基于智谱大模型的城市管理官。这个项目不仅展示了人工智能在城市管理领域的应用潜力,而且还提供了一个未来城市智能化管理的典范。以下是该项目的详细介绍。 项目背景 随着城市化进程的加速,城市管理的复杂性日益增加,城市管理官需要处理的数据量也日益庞大。传统的管理方式已经难以满足现代城市高效、智能的管理需求。因此,开发一个基于人工智能的城市管理官智能助手,以辅助城市管理者做出更加科学、合理的决策,提高城市管理的效率和质量,成为了迫切的需求。 项目应用场景 数据集成与分析 项目旨在整合城市各领域的数据,提供实时数据分析和可视化,帮助城市管理官快速把握城市运行的全局情况。 智能决策支持 利用机器学习算法,项目为城市管理提供决策支持,帮助城市管理官在交通管理、公共安全、环境监测等方面做出更加精准的决策。 自动化任务处理 通过自动化处理常规任务,减轻城市管理官的工作负担,提高工作效率。 预测与预警系统 项目还包括预测城市发展中可能出现的问题,并提前发出预警,防患于未然。 市民互动平台 建立与市民互动的平台,收集市民意见和建议,提高城市管理的透明度和公众参与度。 项目演示 项目演示部分详细介绍了模型训练的过程,包括数据预处理、学习率调整、正则化、训练策略等关键步骤。这些步骤对于提高模型的鲁棒性和泛化能力至关重要。

演示内容 1.数据集成与可视化:展示如何将不同来源的数据集成到一个平台,并进行实时可视化。 2.智能决策支持:演示如何利用AI模型为城市管理提供决策建议。 3.自动化任务处理:展示如何自动化处理常规任务,如交通信号灯控制、垃圾收集调度等。 4.预测与预警系统:演示如何预测城市发展中可能出现的问题,并提前发出预警。 5.市民互动平台:展示如何通过智能助手与市民进行互动,收集市民意见和建议。 演示方式 交互式演示:通过交互式界面,让参观者体验城市管理官智能助手的各项功能。 案例演示:通过具体的案例,展示智能助手在实际城市管理中的应用效果。 视频演示:制作视频,展示智能助手的工作流程和优势。 实施计划 1.需求分析:与城市管理者合作,明确智能助手的具体需求。 2.技术选型:选择合适的技术栈,包括AI模型、数据库、前端框架等。 3.系统开发:按照设计书的要求,开发城市管理官智能助手。 4.测试与优化:进行系统测试,收集反馈,不断优化系统性能。 5.部署与培训:将系统部署到实际环境中,并为城市管理者提供培训。 6.维护与升级:持续维护系统,根据城市管理的新需求进行升级。 风险评估与应对 1.技术风险:评估技术实现的可行性,选择合适的技术解决方案。 2.数据安全与隐私:确保数据的安全存储和传输,保护市民隐私。 3.用户接受度:通过培训和宣传,提高城市管理者和市民对智能助手的接受度。 4.系统稳定性:确保系统的稳定性和可靠性,避免因系统故障影响城市管理。 结论 城市管理官智能助手的开发将极大地提升城市管理的效率和质量,通过智能化手段解决城市发展中的各种问题。本设计书提供了一个全面的框架,指导项目的实施,确保项目的成功。

训练代码:

-- coding: utf-8 --

import os import jieba import dataclasses as dc import functools from collections.abc import Callable, Mapping, Sequence from pathlib import Path from typing import Annotated, Any, Optional, Union import numpy as np import ruamel.yaml as yaml import torch import typer from datasets import Dataset, DatasetDict, NamedSplit, Split, load_dataset from nltk.translate.bleu_score import SmoothingFunction, sentence_bleu from peft import (     PeftConfig,     PeftModelForCausalLM,     get_peft_config,     get_peft_model ) from rouge_chinese import Rouge from torch import nn from transformers import (     AutoModelForCausalLM,     AutoTokenizer,     EvalPrediction,     GenerationConfig,     PreTrainedModel,     PreTrainedTokenizer,     PreTrainedTokenizerFast,     Seq2SeqTrainingArguments, AutoConfig, ) from transformers import DataCollatorForSeq2Seq as _DataCollatorForSeq2Seq

from transformers import Seq2SeqTrainer as _Seq2SeqTrainer

ModelType = Union[PreTrainedModel, PeftModelForCausalLM] TokenizerType = Union[PreTrainedTokenizer, PreTrainedTokenizerFast] app = typer.Typer(pretty_exceptions_show_locals=False)

class DataCollatorForSeq2Seq(_DataCollatorForSeq2Seq):     def call(self, features, return_tensors=None):         output_ids = (             [feature['output_ids'] for feature in features]             if 'output_ids' in features[0].keys()             else None         )         if output_ids is not None:             max_output_length = max(len(out) for out in output_ids)             if self.pad_to_multiple_of is not None:                 max_output_length = (                         (                                 max_output_length + self.pad_to_multiple_of - 1) //                         self.pad_to_multiple_of * self.pad_to_multiple_of                 )             for feature in features:                 remainder = [self.tokenizer.pad_token_id] * (                         max_output_length - len(feature['output_ids'])                 )                 if isinstance(feature['output_ids'], list):                     feature['output_ids'] = feature['output_ids'] + remainder                 else:                     feature['output_ids'] = np.concatenate(                         [feature['output_ids'], remainder]                     ).astype(np.int64)         return super().call(features, return_tensors)

class Seq2SeqTrainer(_Seq2SeqTrainer):     def prediction_step(             self,             model: nn.Module,             inputs: dict[str, Any],             prediction_loss_only: bool,             ignore_keys=None,             **gen_kwargs,     ) -> tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:         if self.args.predict_with_generate:             output_ids = inputs.pop('output_ids')         input_ids = inputs['input_ids']         loss, generated_tokens, labels = super().prediction_step(             model, inputs, prediction_loss_only, ignore_keys, **gen_kwargs         )         generated_tokens = generated_tokens[:, input_ids.size()[1]:]         if self.args.predict_with_generate:             labels = output_ids         return loss, generated_tokens, labels     # For P-Tuning a new save_model function is fine for the prefix_encoder model     # but may cost problems for the whole model loading

    # def save_model(self, output_dir: Optional[str] = None, _internal_call: bool = False):     #     if output_dir is None:     #         output_dir = self.args.output_dir     #     os.makedirs(output_dir, exist_ok=True)     #     ptuning_params = {k: v for k, v in self.model.transformer.prefix_encoder.state_dict().items()}     #     #     torch.save(ptuning_params, os.path.join(output_dir, 'pytorch_model.bin'))     #     #     print(f"P-Tuning model weights saved in {output_dir}")     #     #     if self.tokenizer is not None:     #         self.tokenizer.save_pretrained(output_dir)

def _resolve_path(path: Union[str, Path]) -> Path:     return Path(path).expanduser().resolve()

def _sanity_check(         input_ids: Sequence[int],         output_ids: Sequence[int],         tokenizer: PreTrainedTokenizer, ):     print('--> Sanity check')     for in_id, out_id in zip(input_ids, output_ids):         if in_id == 0:             continue         if in_id in tokenizer.tokenizer.index_special_tokens:             in_text = tokenizer.tokenizer.index_special_tokens[in_id]         else:             in_text = tokenizer.decode([in_id])         print(f'{repr(in_text):>20}: {in_id} -> {out_id}')

@functools.cache def _get_yaml_parser() -> yaml.YAML:     parser = yaml.YAML(typ='safe', pure=True)     parser.indent(mapping=2, offset=2, sequence=4)     parser.default_flow_style = False     return parser

@dc.dataclass class DataConfig(object):     train_file: str     val_file: Optional[str] = None     test_file: Optional[str] = None

    num_proc: Optional[int] = None

    @property     def data_format(self) -> str:         return Path(self.train_file).suffix

    @property     def data_files(self) -> dict[NamedSplit, str]:         return {             split: data_file             for split, data_file in zip(                 [Split.TRAIN, Split.VALIDATION, Split.TEST],                 [self.train_file, self.val_file, self.test_file],             )             if data_file is not None         }

@dc.dataclass class FinetuningConfig(object):     data_config: DataConfig

    max_input_length: int     max_output_length: int

    training_args: Seq2SeqTrainingArguments = dc.field(         default_factory=lambda: Seq2SeqTrainingArguments(output_dir='./output')     )     peft_config: Optional[PeftConfig] = None

    def post_init(self):         if not self.training_args.do_eval or self.data_config.val_file is None:             # skips the evaluation stage when do_eval or eval_file is not provided             self.training_args.do_eval = False             self.training_args.evaluation_strategy = 'no'             self.data_config.val_file = None         else:             self.training_args.per_device_eval_batch_size = (                     self.training_args.per_device_eval_batch_size                     or self.training_args.per_device_train_batch_size             )

    @classmethod     def from_dict(cls, **kwargs) -> 'FinetuningConfig':         training_args = kwargs.get('training_args', None)         if training_args is not None and not isinstance(                 training_args, Seq2SeqTrainingArguments         ):             gen_config = training_args.get('generation_config')             # TODO: a bit hacky             if not isinstance(gen_config, GenerationConfig):                 training_args['generation_config'] = GenerationConfig(                     **gen_config                 )             kwargs['training_args'] = Seq2SeqTrainingArguments(**training_args)

        data_config = kwargs.get('data_config')         if not isinstance(data_config, DataConfig):             kwargs['data_config'] = DataConfig(**data_config)

        peft_config = kwargs.get('peft_config', None)         if peft_config is not None and not isinstance(peft_config, PeftConfig):             kwargs['peft_config'] = get_peft_config(peft_config)         return cls(**kwargs)

    @classmethod     def from_file(cls, path: Union[str, Path]) -> 'FinetuningConfig':         path = _resolve_path(path)         kwargs = _get_yaml_parser().load(path)         return cls.from_dict(**kwargs)

def _load_datasets(         data_dir: Path,         data_format: str,         data_files: dict[NamedSplit, str],         num_proc: Optional[int], ) -> DatasetDict:     if data_format in ('.csv', '.json', '.jsonl'):         dataset_dct = load_dataset(             data_format[1:],             data_dir=data_dir,             data_files=data_files,             num_proc=num_proc,         )     else:         err_msg = f"Cannot load dataset in the '{data_format}' format."         raise NotImplementedError(err_msg)

    return dataset_dct

class DataManager(object):     def init(self, data_dir: str, data_config: DataConfig):         self._num_proc = data_config.num_proc

        self._dataset_dct = _load_datasets(             _resolve_path(data_dir),             data_config.data_format,             data_config.data_files,             self._num_proc,         )

    def _get_dataset(self, split: NamedSplit) -> Optional[Dataset]:         return self._dataset_dct.get(split, None)

    def get_dataset(             self,             split: NamedSplit,             process_fn: Callable[[dict[str, Any]], dict[str, Any]],             batched: bool = True,             remove_orig_columns: bool = True,     ) -> Optional[Dataset]:         orig_dataset = self._get_dataset(split)         if orig_dataset is None:             return

        if remove_orig_columns:             remove_columns = orig_dataset.column_names         else:             remove_columns = None         return orig_dataset.map(             process_fn,             batched=batched,             remove_columns=remove_columns,             num_proc=self._num_proc,         )

def print_model_size(model: PreTrainedModel):     print("--> Model")     total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)     print(f"\n--> model has {total_params / 1e6}M params\n")

def process_batch(         batch: Mapping[str, Sequence],         tokenizer: PreTrainedTokenizer,         max_input_length: int,         max_output_length: int, ) -> dict[str, list]:     batched_tools = batch.get('tools', None)     batched_conv = batch['conversations']     batched_input_ids = []     batched_labels = []

    if batched_tools is None:         batched_tools = [None] * len(batched_conv)

    for tools, conv in zip(batched_tools, batched_conv):         input_ids, loss_masks = [             tokenizer.get_command('[gMASK]'),             tokenizer.get_command('sop'),         ], [False, False]

        if tools is not None:             raise NotImplementedError()

        for message in conv:             if message['role'] in ('system', 'user'):                 loss_mask_val = False             else:                 loss_mask_val = True

            if message['role'] == 'tool':                 raise NotImplementedError()             else:                 new_input_ids = tokenizer.build_single_message(                     message['role'], '', message['content']                 )                 new_loss_masks = [loss_mask_val] * len(new_input_ids)

            input_ids += new_input_ids             loss_masks += new_loss_masks

        input_ids.append(tokenizer.eos_token_id)         loss_masks = [False, *loss_masks]         labels = []         for input_id, mask in zip(input_ids, loss_masks):             if mask:                 labels.append(input_id)             else:                 labels.append(-100)         max_length = max_input_length + max_output_length + 1         batched_input_ids.append(input_ids[:max_length])         batched_labels.append(labels[:max_length])     return {'input_ids': batched_input_ids, 'labels': batched_labels}

def process_batch_eval(         batch: Mapping[str, Sequence],         tokenizer: PreTrainedTokenizer,         max_input_length: int,         max_output_length: int, ) -> dict[str, list]:     batched_tools = batch.get('tools', None)     batched_conv = batch['conversations']     batched_input_ids = []     # To avoid computing loss, we do not provide the labels field in the input dictionary.     batched_output_ids = []

    if batched_tools is None:         batched_tools = [None] * len(batched_conv)

    for tools, conv in zip(batched_tools, batched_conv):         input_ids = [             tokenizer.get_command('[gMASK]'),             tokenizer.get_command('sop'),         ]

        if tools is not None:             raise NotImplementedError()

        for message in conv:             if len(input_ids) >= max_input_length:                 break             if message['role'] == 'tool':                 raise NotImplementedError()             else:                 new_input_ids = tokenizer.build_single_message(                     message['role'], '', message['content']                 )                 if message['role'] == 'assistant':                     output_prompt, output_ids = (                         new_input_ids[:1],                         new_input_ids[1:],                     )                     output_ids.append(tokenizer.eos_token_id)                     batched_input_ids.append(                         input_ids[:max_input_length] + output_prompt[:1]                     )                     batched_output_ids.append(output_ids[:max_output_length])                 input_ids += new_input_ids     return {'input_ids': batched_input_ids, 'output_ids': batched_output_ids}

Not sure if this is necessary, can set it to half.

If train with cpu, cast all params to fp32 instead of trainable ones.

def _prepare_model_for_training(model: nn.Module, use_cpu: bool):     for param in model.parameters():         if param.requires_grad or use_cpu:             param.data = param.data.to(torch.float32)

def load_tokenizer_and_model(         model_dir: str,         peft_config: Optional[PeftConfig] = None, ) -> tuple[PreTrainedTokenizer, nn.Module]:     tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)     if peft_config is not None:         if peft_config.peft_type.name == "PREFIX_TUNING":             config = AutoConfig.from_pretrained(model_dir, trust_remote_code=True)             config.pre_seq_len = peft_config.num_virtual_tokens             config.use_cache = False             model = AutoModelForCausalLM.from_pretrained(                 model_dir,                 trust_remote_code=True,                 config=config,             )         if peft_config.peft_type.name == "LORA":             model = AutoModelForCausalLM.from_pretrained(                 model_dir,                 trust_remote_code=True,                 empty_init=False,                 use_cache=False             )             model = get_peft_model(model, peft_config)             model.print_trainable_parameters()     else:         model = AutoModelForCausalLM.from_pretrained(             model_dir,             trust_remote_code=True,             empty_init=False,             use_cache=False         )     print_model_size(model)     return tokenizer, model

def compute_metrics(eval_preds: EvalPrediction, tokenizer: PreTrainedTokenizer):     batched_pred_ids, batched_label_ids = eval_preds

    metrics_dct = {'rouge-1': [], 'rouge-2': [], 'rouge-l': [], 'bleu-4': []}     for pred_ids, label_ids in zip(batched_pred_ids, batched_label_ids):         pred_txt = tokenizer.decode(pred_ids).strip()         label_txt = tokenizer.decode(label_ids).strip()         pred_tokens = list(jieba.cut(pred_txt))         label_tokens = list(jieba.cut(label_txt))         rouge = Rouge()         scores = rouge.get_scores(' '.join(pred_tokens), ' '.join(label_tokens))         for k, v in scores[0].items():             metrics_dct[k].append(round(v['f'] * 100, 4))         metrics_dct['bleu-4'].append(             sentence_bleu(                 [label_tokens],                 pred_tokens,                 smoothing_function=SmoothingFunction().method3,             )         )     return {k: np.mean(v) for k, v in metrics_dct.items()}

@app.command() def main(         data_dir: Annotated[str, typer.Argument(help='')],         model_dir: Annotated[             str,             typer.Argument(                 help='A string that specifies the model id of a pretrained model configuration hosted on huggingface.co, or a path to a directory containing a model configuration file.'             ),         ],         config_file: Annotated[str, typer.Argument(help='')],         auto_resume_from_checkpoint: str = typer.Argument(             default='',             help='If entered as yes, automatically use the latest save checkpoint. If it is a numerical example 12 15, use the corresponding save checkpoint. If the input is no, restart training'         ),

):     ft_config = FinetuningConfig.from_file(config_file)     tokenizer, model = load_tokenizer_and_model(model_dir, peft_config=ft_config.peft_config)     data_manager = DataManager(data_dir, ft_config.data_config)

    train_dataset = data_manager.get_dataset(         Split.TRAIN,         functools.partial(             process_batch,             tokenizer=tokenizer,             max_input_length=ft_config.max_input_length,             max_output_length=ft_config.max_output_length,         ),         batched=True,     )     print('train_dataset:', train_dataset)     val_dataset = data_manager.get_dataset(         Split.VALIDATION,         functools.partial(             process_batch_eval,             tokenizer=tokenizer,             max_input_length=ft_config.max_input_length,             max_output_length=ft_config.max_output_length,         ),         batched=True,     )     if val_dataset is not None:         print('val_dataset:', val_dataset)     test_dataset = data_manager.get_dataset(         Split.TEST,         functools.partial(             process_batch_eval,             tokenizer=tokenizer,             max_input_length=ft_config.max_input_length,             max_output_length=ft_config.max_output_length,         ),         batched=True,     )     if test_dataset is not None:         print('test_dataset:', test_dataset)

    # checks encoded dataset     _sanity_check(         train_dataset[0]["input_ids"], train_dataset[0]["labels"], tokenizer     )

    # turn model to fp32     _prepare_model_for_training(model, ft_config.training_args.use_cpu)

    ft_config.training_args.generation_config.pad_token_id = (         tokenizer.pad_token_id     )     ft_config.training_args.generation_config.eos_token_id = [         tokenizer.eos_token_id,         tokenizer.get_command('<|user|>'),         tokenizer.get_command('<|observation|>'),     ]     model.gradient_checkpointing_enable()     model.enable_input_require_grads()

    use_tokenizer = True     if ft_config.peft_config is not None:         use_tokenizer = False if ft_config.peft_config.peft_type == "LORA" else True

    trainer = Seq2SeqTrainer(         model=model,         args=ft_config.training_args,         data_collator=DataCollatorForSeq2Seq(             tokenizer=tokenizer,             padding='longest',             return_tensors='pt',         ),         train_dataset=train_dataset,         eval_dataset=val_dataset.select(list(range(50))),         tokenizer=tokenizer if use_tokenizer else None,  # LORA does not need tokenizer         compute_metrics=functools.partial(compute_metrics, tokenizer=tokenizer),     )

    if auto_resume_from_checkpoint.upper() == "" or auto_resume_from_checkpoint is None:         trainer.train()     else:         output_dir = ft_config.training_args.output_dir         dirlist = os.listdir(output_dir)         checkpoint_sn = 0         for checkpoint_str in dirlist:             if checkpoint_str.find("eckpoint") > 0 and checkpoint_str.find("tmp") == -1:                 checkpoint = int(checkpoint_str.replace("checkpoint-", ""))                 if checkpoint > checkpoint_sn:                     checkpoint_sn = checkpoint         if auto_resume_from_checkpoint.upper() == "YES":             if checkpoint_sn > 0:                 model.gradient_checkpointing_enable()                 model.enable_input_require_grads()                 checkpoint_directory = os.path.join(output_dir, "checkpoint-" + str(checkpoint_sn))                 print("resume checkpoint from  checkpoint-" + str(checkpoint_sn))                 trainer.train(resume_from_checkpoint=checkpoint_directory)             else:                 trainer.train()         else:             if auto_resume_from_checkpoint.isdigit():                 if int(auto_resume_from_checkpoint) > 0:                     checkpoint_sn = int(auto_resume_from_checkpoint)                     model.gradient_checkpointing_enable()                     model.enable_input_require_grads()                     checkpoint_directory = os.path.join(output_dir, "checkpoint-" + str(checkpoint_sn))                     print("resume checkpoint from  checkpoint-" + str(checkpoint_sn))                     trainer.train(resume_from_checkpoint=checkpoint_directory)             else:                 print(auto_resume_from_checkpoint,                       "The specified checkpoint sn(" + auto_resume_from_checkpoint + ") has not been saved. Please search for the correct chkeckpoint in the model output directory")

    # test stage     if test_dataset is not None:         trainer.predict(test_dataset)

if name == 'main':     app()