项目要进行比较多的矩阵操作,特别是二维矩阵。刚开始做实验时,使用了动态二维数组,于是写了一堆Matrix函数,作矩阵的乘除加减求逆求行列式。实验做完了,开始做代码优化,发现Matrix.h文件里适用性太低,而且动态二维数组的空间分配与释放也影响效率,于是寻找其他解决方案。

首先考虑的是与Matlab混合编程,折腾了半天把Matlab环境与VS2010环境之后,发现Matlab编译出来的函数使用起来也比较麻烦,要把数组转化成该函数适用的类型后才能使用这些函数。我的二维数组也不是上千万维的,估计这个转化的功夫就牺牲了一部分效率了。(如果谁有混合编程的心得,求帮忙,囧。。。)

接着想到使用一维数组的方法,或者把一维数组封装在一个类里边。想着又要写一堆矩阵操作函数头就大,索性谷歌了一下矩阵处理库,除了自己之前知道的OpenCV库(之前由于转化cvarr麻烦,于是放弃),还有Eigen, Armadillo。

该博客对这三个库的效率做了一个简单的评测,OpenCV库的矩阵操作效率是最低的,还好我没使用。Eigen速度最快,与自己定义数组的操作效率相当(- -,才相当吗?我本来还想找个更快的呢)。于是选择使用Eigen。


进入正题。

安装:

​http://eigen.tuxfamily.org/index.php?title=Main_Page​​这里是官网,直接把包下载下来,不大,也就几M,我是直接放在自己项目文件夹(考虑项目封装时,这样比较方便),放在VS2010 <INCLUDE>文件夹。

简单使用:

看了一下官方文档,Eigen库除了能实现各种矩阵操作外,貌似还提供《数学分析》中的各种矩阵操作(包括L矩阵U矩阵)。目前我使用到的还是简单的矩阵操作,如加减乘除,求行列式,转置,逆,这些基本操作只要:

#include "Eigen/Eigen"  
using namespace Eigen;


就能实现,别忘了名空间Eigen。


包含的类型:

Matrices

Arrays

Matrix<float,Dynamic,Dynamic> <=> ​​MatrixXf​

Matrix<double,Dynamic,1> <=> ​​VectorXd​

Matrix<int,1,Dynamic> <=> ​​RowVectorXi​

Matrix<float,3,3> <=> ​​Matrix3f​

Matrix<float,4,1> <=> ​​Vector4f​

Array<float,Dynamic,Dynamic> <=> ArrayXXfArray<double,Dynamic,1> <=> ArrayXdArray<int,1,Dynamic> <=> RowArrayXiArray<float,3,3> <=> Array33fArray<float,4,1> <=> Array4f

  如上表,主要包括两种类型,Matrices与Arryays,接着是这两种类型的派生类型。现在我用到的是Matrices(我不明白这两种类型在效率间有什么差距,囧。。。),其中Matrix代表二维矩阵,Vector代表列向量RowVector代表行向量。如果后面跟着X,则代表是动态的数组,运行时可以根据需求改变,如果是数字,则代表是静态的(根据实验,最多能建立4维的静态矩阵或者数组,- -,为嘛不是6维,实验正好需要)。i代表int类型,f代表float类型,d代表double。

对应关系:

Matrix

二维矩阵

Vector

列向量

RowVector

行向量

X

动态

固定数字n

静态,4>=n>=1

i

int

f

float

d

double

Arrays类型的话也跟Matrices差不多。

基本操作,定义,初始化,矩阵操作:

#include <iostream>  
#include "Eigen/Eigen"
using namespace std;
using namespace Eigen;

void foo(MatrixXf& m)
{
Matrix3f m2=Matrix3f::Zero(3,3);
m2(0,0)=1;
m=m2;
}
int main()
{
/* 定义,定义时默认没有初始化,必须自己初始化 */
MatrixXf m1(3,4); //动态矩阵,建立3行4列。
MatrixXf m2(4,3); //4行3列,依此类推。
MatrixXf m3(3,3);
Vector3f v1; //若是静态数组,则不用指定行或者列
/* 初始化 */
m1 = MatrixXf::Zero(3,4); //用0矩阵初始化,要指定行列数
m2 = MatrixXf::Zero(4,3);
m3 = MatrixXf::Identity(3,3); //用单位矩阵初始化
v1 = Vector3f::Zero(); //同理,若是静态的,不用指定行列数

m1 << 1,0,0,1, //也可以以这种方式初始化
1,5,0,1,
0,0,9,1;
m2 << 1,0,0,
0,4,0,
0,0,7,
1,1,1;

/* 元素的访问 */
v1[1] = 1;
m3(2,2) = 7;
cout<<"v1:\n"<<v1<<endl;
cout<<"m3:\n"<<m3<<endl;
/* 复制操作 */
VectorXf v2=v1; //复制后,行数与列数和右边的v1相等,matrix也是一样,
//也可以通过这种方式重置动态数组的行数与列数
cout<<"v2:\n"<<v2<<endl;

/* 矩阵操作,可以实现 + - * / 操作,同样可以实现连续操作(但是维数必须符合情况),
如m1,m2,m3维数相同,则可以m1 = m2 + m3 + m1; */
m3 = m1 * m2;
v2 += v1;
cout<<"m3:\n"<<m3<<endl;
cout<<"v2:\n"<<v2<<endl;
//m3 = m3.transpose(); 这句出现错误,估计不能给自己赋值
cout<<"m3转置:\n"<<m3.transpose()<<endl;
cout<<"m3行列式:\n"<<m3.determinant()<<endl;
m3 = m3.inverse();
cout<<"m3求逆:\n"<<m3<<endl;

system("pause");

return 0;
}


输出:

v1:  
0
1
0
m3:
1 0 0
0 1 0
0 0 7
v2:
0
1
0
m3:
2 1 1
2 21 1
1 1 64
v2:
0
2
0
m3转置:
2 2 1
1 21 1
1 1 64
m3行列式:
2540
m3求逆:
0.0156401 -0.000733676 -0.000232913
-0.000733676 0.0476889 -0.000733676
-0.000232913 -0.000733676 0.0156401


基本的操作就是以上这些!