题目链接:https://leetcode.com/problems/edit-distance/ 题目:

Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

You have the following 3 operations permitted on a word:

a) Insert a character
b) Delete a character
c) Replace a character

思路:

c[i][j]表示word1的0~i子串和word2的0~j子串的最小编辑距离。状态转移方程:

如果sc[i]==tc[j]即最后一个字符相等 : c[i][j]=min{c[i-1][j],c[i][j-1],c[i-1][j-1]}

否则最后一个字符需要替换增加1个编辑距离:c[i][j]=min{c[i-1][j],c[i][j-1],c[i-1][j-1]+1}

算法


 

1. public int minDistance(String word1, String word2) {  
2. char sc[] = word1.toCharArray();  
3. char tc[] = word2.toCharArray();  
4. int[][] c = new int[word1.length() + 1][word2.length() + 1];  
5.   
6. for (int i = 0; i <= word1.length(); i++) {  
7. 0] = i;  
8.     }  
9. for (int j = 0; j <= word2.length(); j++) {  
10. 0][j] = j;  
11.     }  
12.   
13. for (int i = 1; i <= word1.length(); i++) {  
14. for (int j = 1; j <= word2.length(); j++) {  
15. int n1 = c[i - 1][j] + 1;  
16. int n2 = c[i][j - 1] + 1;  
17. int n3 = c[i - 1][j - 1];  
18. if (sc[i - 1] != tc[j - 1])  
19.                 n3++;  
20.             c[i][j] = Math.min(n1, n2);  
21.             c[i][j] = Math.min(c[i][j], n3);  
22.         }  
23.     }  
24. return c[word1.length()][word2.length()];  
25. }