Transformers学习笔记3. HuggingFace管道函数Pipeline
原创
©著作权归作者所有:来自51CTO博客作者编程圈子的原创作品,请联系作者获取转载授权,否则将追究法律责任
Transformers学习笔记3. HuggingFace管道函数Pipeline
- 1. 情感分析
- 2. 零样本文本分类
- 3. 实体名称识别
- 4. 摘要
- 5. 文本生成
- 6. GPT2英文文本生成
- 7. 遮挡字还原
- 8. 问答
- 9. 翻译
一、简介
Hugging face提供了管道函数——Pipeline,可以使用极少的代码快速开启一个NLP任务。
Pipeline 具备了数据预处理、模型处理、模型输出后处理等步骤,可以直接输入原始数据,然后给出预测结果,十分方便。
给定一个任务之后,pipeline会自动调用一个预训练好的模型,然后根据你给的输入执行下面三个步骤:
- 预处理输入文本,让它可被模型读取
- 模型处理
- 模型输出的后处理,让预测结果可读
虽然Pipeline使用很简单,但对于专业人士缺乏灵活性。
当前在下面网址查到当前有效的Pipeline:
https://huggingface.co/docs/transformers/main_classes/pipelines
本文介绍其中一些管道模型的使用。
二、一些管道模型示例
1. 情感分析
from transformers import pipeline
classifier = pipeline("sentiment-analysis")
classifier("I am happy.")
输出:
[{'label': 'POSITIVE', 'score': 0.9998760223388672}]
也可以传列表作为参数。
2. 零样本文本分类
from transformers import pipeline
classifier = pipeline("zero-shot-classification")
classifier(
["This is a course about the Transformers library",
"New policy mix to propel turnaround in China's economy"],
candidate_labels=["education", "politics", "business"],
)
[{'sequence': 'This is a course about the Transformers library', 'labels': ['education', 'business', 'politics'], 'scores': [0.8445969820022583, 0.11197575181722641, 0.0434272475540638]},
{'sequence': "New policy mix to propel turnaround in China's economy", 'labels': ['business', 'politics', 'education'], 'scores': [0.6015452146530151, 0.348330557346344, 0.05012420192360878]}]
3. 实体名称识别
from transformers import pipeline
ner = pipeline("ner", grouped_entities=True)
print(ner("My name is Sylvain and I work at Hugging Face in Brooklyn."))
输出:
[{'entity_group': 'PER', 'score': 0.9981694, 'word': 'Sylvain', 'start': 11, 'end': 18},
{'entity_group': 'ORG', 'score': 0.9796019, 'word': 'Hugging Face', 'start': 33, 'end': 45},
{'entity_group': 'LOC', 'score': 0.9932106, 'word': 'Brooklyn', 'start': 49, 'end': 57}]
4. 摘要
from transformers import pipeline
# use bart in pytorch
summarizer = pipeline("summarization")
summarizer("Sam Shleifer writes the best docstring examples in the whole world.", min_length=5, max_length=8)
输出:
# max_length=8
[{'summary_text': ' Sam Shleifer writes'}]
# max_length=12
[{'summary_text': ' Sam Shleifer writes the best docstring'}]
5. 文本生成
from transformers import pipeline
generator = pipeline('text-generation', model='liam168/chat-DialoGPT-small-zh')
print(generator('今天早上早点到公司,', max_length=100))
6. GPT2英文文本生成
from transformers import pipeline
generator = pipeline("text-generation", model="distilgpt2")
print(generator(
"In this course, we will teach you how to",
max_length=30,
num_return_sequences=2,
))
结果:
[{'generated_text': 'In this course, we will teach you how to write a powerful and useful resource for your students.\n\n\n\nHow can you understand your own'},
{'generated_text': 'In this course, we will teach you how to program a \u202an–n\u202f\u202f\u202f and learn how to use it.'}]
7. 遮挡字还原
from transformers import pipeline
unmasker = pipeline('fill-mask')
print(unmasker('What the <mask>?', top_k=3))
结果:
[{'score': 0.378376841545105, 'token': 17835, 'token_str': ' heck', 'sequence': 'What the heck?'},
{'score': 0.32931089401245117, 'token': 7105, 'token_str': ' hell', 'sequence': 'What the hell?'},
{'score': 0.1464540809392929, 'token': 26536, 'token_str': ' fuck', 'sequence': 'What the fuck?'}]
8. 问答
from transformers import pipeline
question_answerer = pipeline("question-answering")
print(question_answerer(
question="Where do I work?",
context="My name is Sylvain and I work at Hugging Face in Brooklyn",
))
输出:
{'score': 0.6949763894081116, 'start': 33, 'end': 45, 'answer': 'Hugging Face'}
9. 翻译
一个中文到广东话翻译器:
from transformers import pipeline
translator = pipeline("translation", model="botisan-ai/mt5-translate-zh-yue")
print(translator("今天吃早饭没有?"))
输出:
[{'translation_text': '今日食早飯未?'}]