Zookeeper内部原理


目录

  • Zookeeper内部原理
  • 一、节点类型
  • 二、Stat结构体
  • 三、监听器原理(重点)
  • 四、选举机制(重点)
  • 五、写数据流程


一、节点类型

zookeeper中的snapshot_服务器

二、Stat结构体

  1. czxid-创建节点的事务zxid
    每次修改ZooKeeper状态都会收到一个zxid形式的时间戳,也就是ZooKeeper事务ID。
    事务ID是ZooKeeper中所有修改总的次序。每个修改都有唯一的zxid,如果zxid1小于zxid2,那么zxid1在zxid2之前发生。
  2. ctime - znode被创建的毫秒数(从1970年开始)
  3. mzxid - znode最后更新的事务zxid
  4. mtime - znode最后修改的毫秒数(从1970年开始)
  5. pZxid-znode最后更新的子节点zxid
  6. cversion - znode子节点变化号,znode子节点修改次数
  7. dataversion - znode数据变化号
  8. aclVersion - znode访问控制列表的变化号
  9. ephemeralOwner- 如果是临时节点,这个是znode拥有者的session id。如果不是临时节点则是0。
  10. dataLength- znode的数据长度
  11. numChildren - znode子节点数量

三、监听器原理(重点)

zookeeper中的snapshot_服务器_02

四、选举机制(重点)

  1. 半数机制:集群中半数以上机器存活,集群可用。所以Zookeeper适合安装奇数台服务器。
  2. Zookeeper虽然在配置文件中并没有指定Master和Slave。但是,Zookeeper工作时,是有一个节点为Leader,其他则为Follower,Leader是通过内部的选举机制临时产生的。
  3. 以一个简单的例子来说明整个选举的过程。
    假设有五台服务器组成的Zookeeper集群,它们的id从1-5,同时它们都是最新启动的,也就是没有历史数据,在存放数据量这一点上,都是一样的。假设这些服务器依序启动,来看看会发生什么。
  1. 服务器1启动,发起一次选举。服务器1投自己一票。此时服务器1票数一票,不够半数以上(3票),选举无法完成,服务器1状态保持为LOOKING;
  2. 服务器2启动,再发起一次选举。服务器1和2分别投自己一票并交换选票信息:此时服务器1发现服务器2的ID比自己目前投票推举的(服务器1)大,更改选票为推举服务器2。此时服务器1票数0票,服务器2票数2票,没有半数以上结果,选举无法完成,服务器1,2状态保持LOOKING
  3. 服务器3启动,发起一次选举。此时服务器1和2都会更改选票为服务器3。此次投票结果:服务器1为0票,服务器2为0票,服务器3为3票。此时服务器3的票数已经超过半数,服务器3当选Leader。服务器1,2更改状态为FOLLOWING,服务器3更改状态为LEADING;
  4. 服务器4启动,发起一次选举。此时服务器1,2,3已经不是LOOKING状态,不会更改选票信息。交换选票信息结果:服务器3为3票,服务器4为1票。此时服务器4服从多数,更改选票信息为服务器3,并更改状态为FOLLOWING;
  5. 服务器5启动,同4一样当小弟。

五、写数据流程

zookeeper中的snapshot_zookeeper_03