本教程的知识点为:机器学习算法定位、 K-近邻算法 1.4 k值的选择 1 K值选择说明 1.6 案例:鸢尾花种类预测--数据集介绍 1 案例:鸢尾花种类预测 1.8 案例:鸢尾花种类预测—流程实现 1 再识K-近邻算法API 1.11 案例2:预测facebook签到位置 1 项目描述 线性回归 2.3 数学:求导 1 常见函数的导数 线性回归 2.5 梯度下降方法介绍 1 详解梯度下降算法 线性回归 2.6 线性回归api再介绍 小结 线性回归 2.9 正则化线性模型 1 Ridge Regression (岭回归,又名 Tikhonov regularization) 逻辑回归 3.3 案例:癌症分类预测-良/恶性乳腺癌肿瘤预测 1 背景介绍 决策树算法 4.2 决策树分类原理 1 熵 决策树算法 4.3 cart剪枝 1 为什么要剪枝 决策树算法 4.4 特征工程-特征提取 1 特征提取 决策树算法 4.5 决策树算法api 4.6 案例:泰坦尼克号乘客生存预测 集成学习基础 5.1 集成学习算法简介 1 什么是集成学习 2 复习:机器学习的两个核心任务 集成学习基础 5.3 otto案例介绍 -- Otto Group Product Classification Challenge 1.背景介绍 2.数据集介绍 3.评分标准 集成学习基础 5.5 GBDT介绍 1 Decision Tree:CART回归树 1.1 回归树生成算法(复习) 聚类算法 6.1 聚类算法简介 1 认识聚类算法 聚类算法 6.5 算法优化 1 Canopy算法配合初始聚类 聚类算法 6.7 案例:探究用户对物品类别的喜好细分 1 需求 第一章知识补充:再议数据分割 1 留出法 2 交叉验证法 KFold和StratifiedKFold 3 自助法 正规方程的另一种推导方式 1.损失表示方式 2.另一种推导方式 梯度下降法算法比较和进一步优化 1 算法比较 2 梯度下降优化算法 第二章知识补充: 多项式回归 1 多项式回归的一般形式 维灾难 1 什么是维灾难 2 维数灾难与过拟合 第三章补充内容:分类中解决类别不平衡问题 1 类别不平衡数据集基本介绍 向量与矩阵的范数 1.向量的范数 2.矩阵的范数 如何理解无偏估计?无偏估计有什么用? 1.如何理解无偏估计

完整笔记资料代码:https://gitee.com/yinuo112/AI/tree/master/机器学习/嘿马机器学习(算法篇)/note.md

感兴趣的小伙伴可以自取哦~


全套教程部分目录:


部分文件图片:

线性回归

学习目标

  • 掌握线性回归的实现过程
  • 应用LinearRegression或SGDRegressor实现回归预测
  • 知道回归算法的评估标准及其公式
  • 知道过拟合与欠拟合的原因以及解决方法
  • 知道岭回归的原理及与线性回归的不同之处
  • 应用Ridge实现回归预测
  • 应用joblib实现模型的保存与加载

2.9 正则化线性模型

学习目标

  • 知道正则化中岭回归的线性模型
  • 知道正则化中lasso回归的线性模型
  • 知道正则化中弹性网络的线性模型
  • 了解正则化中early stopping的线性模型

  • Ridge Regression 岭回归
  • Lasso 回归
  • Elastic Net 弹性网络
  • Early stopping

1 Ridge Regression (岭回归,又名 Tikhonov regularization)

岭回归是线性回归的正则化版本,即在原来的线性回归的 cost function 中添加正则项(regularization term):

image-20190404180643584

以达到在拟合数据的同时,使模型权重尽可能小的目的,岭回归代价函数:

image-20190404180757307

  • α=0:岭回归退化为线性回归

2 Lasso Regression(Lasso 回归)

Lasso 回归是线性回归的另一种正则化版本,正则项为权值向量的ℓ1范数。

Lasso回归的代价函数 :

image-20190404181600245

【注意 】

  • Lasso Regression 的代价函数在 θ<sub>i</sub>=0处是不可导的.
  • 解决方法:在θ<sub>i</sub>=0处用一个次梯度向量(subgradient vector)代替梯度,如下式
  • Lasso Regression 的次梯度向量

image-20190404181709725

Lasso Regression 有一个很重要的性质是:倾向于完全消除不重要的权重。

例如:当α 取值相对较大时,高阶多项式退化为二次甚至是线性:高阶多项式特征的权重被置为0。

也就是说,Lasso Regression 能够自动进行特征选择,并输出一个稀疏模型(只有少数特征的权重是非零的)。

3 Elastic Net (弹性网络)

弹性网络在岭回归和Lasso回归中进行了折中,通过 混合比(mix ratio) r 进行控制:

  • r=0:弹性网络变为岭回归
  • r=1:弹性网络便为Lasso回归

弹性网络的代价函数 :

image-20190406110447953

一般来说,我们应避免使用朴素线性回归,而应对模型进行一定的正则化处理,那如何选择正则化方法呢?

小结:

  • 常用:岭回归

  • 假设只有少部分特征是有用的:

    • 弹性网络
    • Lasso
    • 一般来说,弹性网络的使用更为广泛。因为在特征维度高于训练样本数,或者特征是强相关的情况下,Lasso回归的表现不太稳定。
  • api:

from sklearn.linear_model import Ridge, ElasticNet, Lasso









## 4 Early Stopping [了解]




Early Stopping 也是正则化迭代学习的方法之一。

其做法为:在验证错误率达到最小值的时候停止训练。




## 5 小结




* Ridge Regression 岭回归

* 就是把系数添加平方项
* 然后限制系数值的大小
* α值越小,系数值越大,α越大,系数值越小

* Lasso 回归

* 对系数值进行绝对值处理
* 由于绝对值在顶点处不可导,所以进行计算的过程中产生很多0,最后得到结果为:稀疏矩阵

* Elastic Net 弹性网络

* 是前两个内容的综合
* 设置了一个r,如果r=0--岭回归;r=1--Lasso回归

* Early stopping

* 通过限制错误率的阈值,进行停止





# 2.10 线性回归的改进-岭回归







## 学习目标




* 知道岭回归api的具体使用

---




## 1 API




* sklearn.linear_model.Ridge(alpha=1.0, fit_intercept=True,solver="auto", normalize=False)

* 具有l2正则化的线性回归
* alpha:正则化力度,也叫 λ

   * **λ取值:0~1 1~10**

* solver:会根据数据自动选择优化方法

   * **sag:如果数据集、特征都比较大,选择该随机梯度下降优化**

* normalize:数据是否进行标准化

   * normalize=False:可以在fit之前调用preprocessing.StandardScaler标准化数据

* Ridge.coef_:回归权重
* Ridge.intercept_:回归偏置


**Ridge方法相当于SGDRegressor(penalty='l2', loss="squared_loss"),只不过SGDRegressor实现了一个普通的随机梯度下降学习,推荐使用Ridge(实现了SAG)**

* sklearn.linear_model.RidgeCV(_BaseRidgeCV, RegressorMixin)

* 具有l2正则化的线性回归,可以进行交叉验证
* coef_:回归系数


```python
class _BaseRidgeCV(LinearModel):
 def __init__(self, alphas=(0.1, 1.0, 10.0),
              fit_intercept=True, normalize=False,scoring=None,
              cv=None, gcv_mode=None,
              store_cv_values=False):

2 观察正则化程度的变化,对结果的影响?

正则化力度

  • 正则化力度越大,权重系数会越小
  • 正则化力度越小,权重系数会越大

3 波士顿房价预测

def linear_model3():
    """
    线性回归:岭回归
    :return:
    """
    # 1.获取数据
    data = load_boston()

    # 2.数据集划分
    x_train, x_test, y_train, y_test = train_test_split(data.data, data.target, random_state=22)

    # 3.特征工程-标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.fit_transform(x_test)

    # 4.机器学习-线性回归(岭回归)
    estimator = Ridge(alpha=1)
    # estimator = RidgeCV(alphas=(0.1, 1, 10))
    estimator.fit(x_train, y_train)

    # 5.模型评估
    # 5.1 获取系数等值
    y_predict = estimator.predict(x_test)
    print("预测值为:\n", y_predict)
    print("模型中的系数为:\n", estimator.coef_)
    print("模型中的偏置为:\n", estimator.intercept_)

    # 5.2 评价
    # 均方误差
    error = mean_squared_error(y_test, y_predict)
    print("误差为:\n", error)

4 小结

  • sklearn.linear_model.Ridge(alpha=1.0, fit_intercept=True,solver="auto", normalize=False)【知道】

    • 具有l2正则化的线性回归

    • alpha -- 正则化

      • 正则化力度越大,权重系数会越小
      • 正则化力度越小,权重系数会越大
    • normalize

      • 默认封装了,对数据进行标准化处理

2.11 模型的保存和加载

学习目标

  • 知道sklearn中模型的保存和加载

1 sklearn模型的保存和加载API

  • from sklearn.externals import joblib

    • 保存:joblib.dump(estimator, 'test.pkl')
    • 加载:estimator = joblib.load('test.pkl')

2 线性回归的模型保存加载案例

def load_dump_demo():
    """
    模型保存和加载
    :return:
    """
    # 1.获取数据
    data = load_boston()

    # 2.数据集划分
    x_train, x_test, y_train, y_test = train_test_split(data.data, data.target, random_state=22)

    # 3.特征工程-标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.fit_transform(x_test)

    # 4.机器学习-线性回归(岭回归)
    # # 4.1 模型训练
    # estimator = Ridge(alpha=1)
    # estimator.fit(x_train, y_train)
    #
    # # 4.2 模型保存
    # joblib.dump(estimator, "./data/test.pkl")

    # 4.3 模型加载
    estimator = joblib.load("./data/test.pkl")

    # 5.模型评估
    # 5.1 获取系数等值
    y_predict = estimator.predict(x_test)
    print("预测值为:\n", y_predict)
    print("模型中的系数为:\n", estimator.coef_)
    print("模型中的偏置为:\n", estimator.intercept_)

    # 5.2 评价
    # 均方误差
    error = mean_squared_error(y_test, y_predict)
    print("误差为:\n", error)

3 小结

  • sklearn.externals import joblib【知道】

    • 保存:joblib.dump(estimator, 'test.pkl')

    • 加载:estimator = joblib.load('test.pkl')

    • 注意:

      • 1.保存文件,后缀名是**.pkl
      • 2.加载模型是需要通过一个变量进行承接

逻辑回归

学习目标

  • 知道逻辑回归的损失函数、优化方法
  • 知道逻辑回归的应用场景
  • 应用LogisticRegression实现逻辑回归预测
  • 知道精确率、召回率等指标的区别
  • 知道如何解决样本不均衡情况下的评估
  • 会绘制ROC曲线图形

逻辑回归

学习目标

  • 知道逻辑回归的损失函数、优化方法
  • 知道逻辑回归的应用场景
  • 应用LogisticRegression实现逻辑回归预测
  • 知道精确率、召回率等指标的区别
  • 知道如何解决样本不均衡情况下的评估
  • 会绘制ROC曲线图形

3.1 逻辑回归介绍

学习目标

  • 了解逻辑回归的应用场景
  • 知道逻辑回归的原理
  • 掌握逻辑回归的损失函数和优化方案

逻辑回归(Logistic Regression)是机器学习中的一种分类模型,逻辑回归是一种分类算法,虽然名字中带有回归。由于算法的简单和高效,在实际中应用非常广泛。

1 逻辑回归的应用场景

  • 广告点击率
  • 是否为垃圾邮件
  • 是否患病
  • 金融诈骗
  • 虚假账号

看到上面的例子,我们可以发现其中的特点,那就是都属于两个类别之间的判断。逻辑回归就是解决二分类问题的利器

2 逻辑回归的原理

要想掌握逻辑回归,必须掌握两点:

  • 逻辑回归中,其输入值是什么

  • 如何判断逻辑回归的输出

2.1 输入

é€"辑回归输å¥

逻辑回归的输入就是一个线性回归的结果。

2.2 激活函数

  • sigmoid函数<span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>g</mi><mo>(</mo><msup><mi>w</mi><mi>T</mi></msup><mo separator="true">,</mo><mi>x</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>+</mo><msup><mi>e</mi><mrow><mo>−</mo><mi>h</mi><mo>(</mo><mi>w</mi><mo>)</mo></mrow></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>+</mo><msup><mi>e</mi><mrow><mo>−</mo><msup><mi>w</mi><mi>T</mi></msup><mi>x</mi></mrow></msup></mrow></mfrac></mrow><annotation encoding="application/x-tex">g(w^T, x)=\frac{1}{1+e^{-h(w)}}=\frac{1}{1+e^{-w^Tx}}</annotation></semantics></math></span><span aria-hidden="true" class="katex-html"><span class="strut" style="height:1.32144em;"></span><span class="strut bottom" style="height:2.125635em;vertical-align:-0.804195em;"></span><span class="base displaystyle textstyle uncramped"><span class="mord mathit" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord"><span class="mord mathit" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist"><span style="top:-0.413em;margin-right:0.05em;"><span class="fontsize-ensurer reset-size5 size5"><span style="font-size:0em;">​</span></span><span class="reset-textstyle scriptstyle uncramped mtight"><span class="mord mathit mtight" style="margin-right:0.13889em;">T</span></span></span><span class="baseline-fix"><span class="fontsize-ensurer reset-size5 size5"><span style="font-size:0em;">​</span></span>​</span></span></span></span><span class="mpunct">,</span><span class="mord mathit">x</span><span class="mclose">)</span><span class="mrel">=</span><span class="mord reset-textstyle displaystyle textstyle uncramped"><span class="mopen sizing reset-size5 size5 reset-textstyle textstyle uncramped nulldelimiter"></span><span class="mfrac"><span class="vlist"><span style="top:0.704em;"><span class="fontsize-ensurer reset-size5 size5"><span style="font-size:0em;">​</span></span><span class="reset-textstyle textstyle cramped"><span class="mord textstyle cramped"><span class="mord mathrm">1</span><span class="mbin">+</span><span class="mord"><span class="mord mathit">e</span><span class="msupsub"><span class="vlist"><span style="top:-0.289em;margin-right:0.05em;"><span class="fontsize-ensurer reset-size5 size5"><span style="font-size:0em;">​</span></span><span class="reset-textstyle scriptstyle cramped mtight"><span class="mord scriptstyle cramped mtight"><span class="mord mtight">−</span><span class="mord mathit mtight">h</span><span class="mopen mtight">(</span><span class="mord mathit mtight" style="margin-right:0.02691em;">w</span><span class="mclose mtight">)</span></span></span></span><span class="baseline-fix"><span class="fontsize-ensurer reset-size5 size5"><span style="font-size:0em;">​</span></span>​</span></span></span></span></span></span></span><span style="top:-0.2300000000000001em;"><span class="fontsize-ensurer reset-size5 size5"><span style="font-size:0em;">​</span></span><span class="reset-textstyle textstyle uncramped frac-line"></span></span><span style="top:-0.677em;"><span class="fontsize-ensurer reset-size5 size5"><span style="font-size:0em;">​</span></span><span class="reset-textstyle textstyle uncramped"><span class="mord textstyle uncramped"><span class="mord mathrm">1</span></span></span></span><span class="baseline-fix"><span class="fontsize-ensurer reset-size5 size5"><span style="font-size:0em;">​</span></span>​</span></span></span><span class="mclose sizing reset-size5 size5 reset-textstyle textstyle uncramped nulldelimiter"></span></span><span class="mrel">=</span><span class="mord reset-textstyle displaystyle textstyle uncramped"><span class="mopen sizing reset-size5 size5 reset-textstyle textstyle uncramped nulldelimiter"></span><span class="mfrac"><span class="vlist"><span style="top:0.720865em;"><span class="fontsize-ensurer reset-size5 size5"><span style="font-size:0em;">​</span></span><span class="reset-textstyle textstyle cramped"><span class="mord textstyle cramped"><span class="mord mathrm">1</span><span class="mbin">+</span><span class="mord"><span class="mord mathit">e</span><span class="msupsub"><span class="vlist"><span style="top:-0.289em;margin-right:0.05em;"><span class="fontsize-ensurer reset-size5 size5"><span style="font-size:0em;">​</span></span><span class="reset-textstyle scriptstyle cramped mtight"><span class="mord scriptstyle cramped mtight"><span class="mord mtight">−</span><span class="mord mtight"><span class="mord mathit mtight" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist"><span style="top:-0.286em;margin-right:0.07142857142857144em;"><span class="fontsize-ensurer reset-size5 size5"><span style="font-size:0em;">​</span></span><span class="reset-scriptstyle scriptscriptstyle cramped mtight"><span class="mord mathit mtight" style="margin-right:0.13889em;">T</span></span></span><span class="baseline-fix"><span class="fontsize-ensurer reset-size5 size5"><span style="font-size:0em;">​</span></span>​</span></span></span></span><span class="mord mathit mtight">x</span></span></span></span><span class="baseline-fix"><span class="fontsize-ensurer reset-size5 size5"><span style="font-size:0em;">​</span></span>​</span></span></span></span></span></span></span><span style="top:-0.22999999999999998em;"><span class="fontsize-ensurer reset-size5 size5"><span style="font-size:0em;">​</span></span><span class="reset-textstyle textstyle uncramped frac-line"></span></span><span style="top:-0.677em;"><span class="fontsize-ensurer reset-size5 size5"><span style="font-size:0em;">​</span></span><span class="reset-textstyle textstyle uncramped"><span class="mord textstyle uncramped"><span class="mord mathrm">1</span></span></span></span><span class="baseline-fix"><span class="fontsize-ensurer reset-size5 size5"><span style="font-size:0em;">​</span></span>​</span></span></span><span class="mclose sizing reset-size5 size5 reset-textstyle textstyle uncramped nulldelimiter"></span></span></span></span></span></span>

  • 判断标准

    • 回归的结果输入到sigmoid函数当中
    • 输出结果:[0, 1]区间中的一个概率值,默认为0.5为阈值

img

逻辑回归最终的分类是通过属于某个类别的概率值来判断是否属于某个类别,并且这个类别默认标记为1(正例),另外的一个类别会标记为0(反例)。(方便损失计算)

输出结果解释(重要):假设有两个类别A,B,并且假设我们的概率值为属于A(1)这个类别的概率值。现在有一个样本的输入到逻辑回归输出结果0.55,那么这个概率值超过0.5,意味着我们训练或者预测的结果就是A(1)类别。那么反之,如果得出结果为0.3那么,训练或者预测结果就为B(0)类别。

关于逻辑回归的阈值是可以进行改变的,比如上面举例中,如果你把阈值设置为0.6,那么输出的结果0.55,就属于B类。

在之前,我们用最小二乘法衡量线性回归的损失

在逻辑回归中,当预测结果不对的时候,我们该怎么衡量其损失呢?

我们来看下图(下图中,设置阈值为0.6),

é€"辑回归运算过程

那么如何去衡量逻辑回归的预测结果与真实结果的差异呢?

3 损失以及优化

3.1 损失

逻辑回归的损失,称之为对数似然损失,公式如下:

  • 分开类别:

单个对数似ç„损失

其中y为真实值,<span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>h</mi><mi>θ</mi></msub><mo>(</mo><mi>x</mi><mo>)</mo></mrow><annotation encoding="application/x-tex">h_\theta(x)</annotation></semantics></math></span><span aria-hidden="true" class="katex-html"><span class="strut" style="height:0.75em;"></span><span class="strut bottom" style="height:1em;vertical-align:-0.25em;"></span><span class="base textstyle uncramped"><span class="mord"><span class="mord mathit">h</span><span class="msupsub"><span class="vlist"><span style="top:0.15em;margin-right:0.05em;margin-left:0em;"><span class="fontsize-ensurer reset-size5 size5"><span style="font-size:0em;">​</span></span><span class="reset-textstyle scriptstyle cramped mtight"><span class="mord mathit mtight" style="margin-right:0.02778em;">θ</span></span></span><span class="baseline-fix"><span class="fontsize-ensurer reset-size5 size5"><span style="font-size:0em;">​</span></span>​</span></span></span></span><span class="mopen">(</span><span class="mord mathit">x</span><span class="mclose">)</span></span></span></span>为预测值

怎么理解单个的式子呢?这个要根据log的函数图像来理解

image-20190221142055367

无论何时,我们都希望损失函数值,越小越好

分情况讨论,对应的损失函数值:

  • 当y=1时,我们希望<span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>h</mi><mi>θ</mi></msub><mo>(</mo><mi>x</mi><mo>)</mo></mrow><annotation encoding="application/x-tex">h_\theta(x)</annotation></semantics></math></span><span aria-hidden="true" class="katex-html"><span class="strut" style="height:0.75em;"></span><span class="strut bottom" style="height:1em;vertical-align:-0.25em;"></span><span class="base textstyle uncramped"><span class="mord"><span class="mord mathit">h</span><span class="msupsub"><span class="vlist"><span style="top:0.15em;margin-right:0.05em;margin-left:0em;"><span class="fontsize-ensurer reset-size5 size5"><span style="font-size:0em;">​</span></span><span class="reset-textstyle scriptstyle cramped mtight"><span class="mord mathit mtight" style="margin-right:0.02778em;">θ</span></span></span><span class="baseline-fix"><span class="fontsize-ensurer reset-size5 size5"><span style="font-size:0em;">​</span></span>​</span></span></span></span><span class="mopen">(</span><span class="mord mathit">x</span><span class="mclose">)</span></span></span></span>值越大越好;

  • 当y=0时,我们希望<span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>h</mi><mi>θ</mi></msub><mo>(</mo><mi>x</mi><mo>)</mo></mrow><annotation encoding="application/x-tex">h_\theta(x)</annotation></semantics></math></span><span aria-hidden="true" class="katex-html"><span class="strut" style="height:0.75em;"></span><span class="strut bottom" style="height:1em;vertical-align:-0.25em;"></span><span class="base textstyle uncramped"><span class="mord"><span class="mord mathit">h</span><span class="msupsub"><span class="vlist"><span style="top:0.15em;margin-right:0.05em;margin-left:0em;"><span class="fontsize-ensurer reset-size5 size5"><span style="font-size:0em;">​</span></span><span class="reset-textstyle scriptstyle cramped mtight"><span class="mord mathit mtight" style="margin-right:0.02778em;">θ</span></span></span><span class="baseline-fix"><span class="fontsize-ensurer reset-size5 size5"><span style="font-size:0em;">​</span></span>​</span></span></span></span><span class="mopen">(</span><span class="mord mathit">x</span><span class="mclose">)</span></span></span></span>值越小越好

  • 综合完整损失函数

完整对数似ç„损失

接下来我们呢就带入上面那个例子来计算一遍,就能理解意义了。

损失计算过程

我们已经知道,-log(P), P值越大,结果越小,所以我们可以对着这个损失的式子去分析

3.2 优化

同样使用梯度下降优化算法,去减少损失函数的值。这样去更新逻辑回归前面对应算法的权重参数,提升原本属于1类别的概率,降低原本是0类别的概率。


4 小结

  • 逻辑回归概念【知道】

    • 解决的是一个二分类问题
    • 逻辑回归的输入是线性回归的输出
  • 逻辑回归的原理【掌握】

    • 输入:

      • 线性回归的输出
    • 激活函数

      • sigmoid函数
      • 把整体的值映射到[0,1]
      • 再设置一个阈值,进行分类判断
  • 逻辑回归的损失和优化【掌握】

    • 损失

      • 对数似然损失
      • 借助了log思想,进行完成
      • 真实值等于0,等于1两种情况进行划分
    • 优化

      • 提升原本属于1类别的概率,降低原本是0类别的概率。

3.2 逻辑回归api介绍

学习目标

  • 知道逻辑回归api的用法

  • sklearn.linear_model.LogisticRegression(solver='liblinear', penalty=‘l2’, C = 1.0)

    • solver可选参数:{'liblinear', 'sag', 'saga','newton-cg', 'lbfgs'},

      • 默认: 'liblinear';用于优化问题的算法。

      • 对于小数据集来说,“liblinear”是个不错的选择,而“sag”和'saga'对于大型数据集会更快。

      • 对于多类问题,只有'newton-cg', 'sag', 'saga'和'lbfgs'可以处理多项损失;“liblinear”仅限于“one-versus-rest”分类。

    • penalty:正则化的种类

    • C:正则化力度

默认将类别数量少的当做正例

LogisticRegression方法相当于 SGDClassifier(loss="log", penalty=" "),SGDClassifier实现了一个普通的随机梯度下降学习。而使用LogisticRegression(实现了SAG)