加油站抽烟烟火智能识别系统利用摄像头和智能分析技术,加油站抽烟烟火智能识别系统实时监测加油站内的加油人员行为,加油站抽烟烟火智能识别系统通过图像识别和行为分析,识别出抽烟和燃放烟火的情况,并发出预警信号以提醒相关人员。加油站抽烟烟火智能识别系统能够实时监测加油站内的加油人员行为,及时发现抽烟和燃放烟火等违规行为,减少火灾风险。加油站抽烟烟火智能识别系统通过智能分析技术,系统可以自动识别加油人员抽烟和燃放烟火的行为,减少人工干预和错误判断的可能性。

YOLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能够同时支持移动 GPU 和从边缘到云端的 GPU 设备。除了架构优化之外,该研究提出的方法还专注于训练过程的优化,将重点放在了一些优化模块和优化方法上。这可能会增加训练成本以提高目标检测的准确性,但不会增加推理成本。研究者将提出的模块和优化方法称为可训练的「bag-of-freebies」。

对于模型重参数化,该研究使用梯度传播路径的概念分析了适用于不同网络层的模型重参数化策略,并提出了有计划的重参数化模型。此外,研究者发现使用动态标签分配技术时,具有多个输出层的模型在训练时会产生新的问题:「如何为不同分支的输出分配动态目标?」针对这个问题,研究者提出了一种新的标签分配方法,称为从粗粒度到细粒度(coarse-to-fine)的引导式标签分配。

加油站抽烟烟火智能识别系统 YOLOv7_计算机视觉

在加油站这种易燃易爆场所,加油人员抽烟和燃放烟火是极其危险的行为。为了及时发现这些违规行为并采取措施,加油站抽烟烟火智能识别系统应运而生。加油站抽烟烟火智能识别系统适用于各类加油站和燃料储存场所。特别是在对火灾风险要求较高的区域,加油站抽烟烟火智能识别系统可以提供有效的监测和预警功能。加油站抽烟烟火智能识别系统一旦发现抽烟和燃放烟火等违规行为,系统会立即发出预警信号,提醒相关人员及时采取措施。

# 检测类
class Detect(nn.Module):
    stride = None  # strides computed during build
    export = False  # onnx export

    def __init__(self, nc=80, anchors=(), ch=()):  # detection layer
        super(Detect, self).__init__()
        self.nc = nc  # number of classes
        self.no = nc + 5  # number of outputs per anchor
        self.nl = len(anchors)  # number of detection layers
        self.na = len(anchors[0]) // 2  # number of anchors
        self.grid = [torch.zeros(1)] * self.nl  # init grid
        a = torch.tensor(anchors).float().view(self.nl, -1, 2)
        self.register_buffer('anchors', a)  # shape(nl,na,2)
        self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2))  # shape(nl,1,na,1,1,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv

    def forward(self, x):
        # x = x.copy()  # for profiling
        z = []  # inference output
        self.training |= self.export
        for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

            if not self.training:  # inference
                if self.grid[i].shape[2:4] != x[i].shape[2:4]:
                    self.grid[i] = self._make_grid(nx, ny).to(x[i].device)

                y = x[i].sigmoid()
                y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i]  # xy
                y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                z.append(y.view(bs, -1, self.no))

        return x if self.training else (torch.cat(z, 1), x)

    @staticmethod
    def _make_grid(nx=20, ny=20):
        yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
        return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()

# 根据配置的.yaml文件搭建模型
class Model(nn.Module):
    def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None):  # model, input channels, number of classes
        super(Model, self).__init__()
        if isinstance(cfg, dict):
            self.yaml = cfg  # model dict
        else:  # is *.yaml
            import yaml  # for torch hub
            self.yaml_file = Path(cfg).name
            with open(cfg) as f:
                self.yaml = yaml.load(f, Loader=yaml.SafeLoader)  # model dict

加油站抽烟烟火智能识别系统是一种基于摄像头和智能分析技术,加油站抽烟烟火智能识别系统通过实时监测和识别加油人员行为,及时发现违规行为并采取措施。加油站抽烟烟火智能识别系统适用于各类加油站和燃料储存场所,可以提供有效的监测和预警功能,保障加油站安全,预防火灾风险。加油站抽烟烟火智能识别系统的应用,我们可以加强对加油人员行为的管理,减少火灾风险,确保加油站的安全运营。