未佩戴安全带智能识别算法基于前端摄像头视频采集实时视频流,未佩戴安全带智能识别算法运用最新的机器学习技术,算法自动识别现场工地作业人员高空作业是否按要求佩戴安全带,未佩戴安全带智能识别系统发现现场人员没有穿戴安全带,不需人为干预自动抓拍告警同步提醒后台人员及时处理避免发生其他不可预料的意外。算法不需要新加上一什么其他硬件设备,对现场作业场景利旧摄像头进行实时监控识别,有现场人员违规行为及时警报。
从YOLOv1到YOLOv3,每一代性能的提升都与backbone(骨干网络)的改进密切相关。在YOLOv3中,作者不仅提供了darknet-53,还提供了轻量级的tiny-darknet。如果你想检测精度与速度兼备,可以选择darknet-53作为backbone;如果你想达到更快的检测速度,精度方面可以妥协。那么tiny-darknet是你很好的选择。总之,YOLOv3的灵活性使得它在实际工程中得到很多人的青睐。相比于 YOLOv2 的 骨干网络,YOLOv3 进行了较大的改进。借助残差网络的思想,YOLOv3 将原来的 darknet-19 改进为darknet-53。
Darknet-53主要由1x1和3x3的卷积层组成,每个卷积层之后包含一个批量归一化层和一个Leaky ReLU,加入这两部分的目的是为了防止过拟合。卷积层、BN层以及LeakyReLU共同组成Darknet-53的基本CBL。因为在Darknet-53中共包含53个这样的CBL,所以称其为Darkent-53。
随着社会的发展和人们生活水平的快速进步,大家对于工地工厂等场景下高空人员作业行为是否佩戴安全带人身安全越来越重视。对于高空作业场景下而言,安全带是现场高空施工作业人员的必备防护用品,按规范穿戴安全带是规范化管理的体现,也是作业人员对自身安全的保障。高处作业是指在距离地坠落高度基准面2米进行的作业,在施工现场正确佩戴符合国家标准的安全带能救一条人命。
class Detect(nn.Module):
stride = None # strides computed during build
onnx_dynamic = False # ONNX export parameter
def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer
super().__init__()
self.nc = nc # number of classes
self.no = nc + 5 # number of outputs per anchor
self.nl = len(anchors) # number of detection layers
self.na = len(anchors[0]) // 2 # number of anchors
self.grid = [torch.zeros(1)] * self.nl # init grid
self.anchor_grid = [torch.zeros(1)] * self.nl # init anchor grid
self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2)
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
self.inplace = inplace # use in-place ops (e.g. slice assignment)
def forward(self, x):
z = [] # inference output
for i in range(self.nl):
x[i] = self.m[i](x[i]) # conv
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
if not self.training: # inference
if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
y = x[i].sigmoid()
if self.inplace:
y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy
wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
y = torch.cat((xy, wh, y[..., 4:]), -1)
z.append(y.view(bs, -1, self.no))
return x if self.training else (torch.cat(z, 1), x)
def _make_grid(self, nx=20, ny=20, i=0):
d = self.anchors[i].device
if check_version(torch.__version__, '1.10.0'): # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
else:
yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
.view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
return grid, anchor_grid
未佩戴安全带智能识别算法通过AI视频分析技术对高空作业人员安全带穿戴进行监测,当未佩戴安全带智能识别算法监测到工地高空作业人员未按照工地要求穿戴安全带时,算法立即触发报警并抓拍存档,通知后台值班人员及时处理。算法在触发报警时,输出的实时视频上以及现场违规照片上显示目标位置,同步回传给给后台平台,有效实现对现场高空施工作业全过程安全监控管理。