工厂人员违规行为识别系统借助视频监控ai分析技术+计算机视觉学习技术,工厂人员违规行为识别系统利用现场已有监控摄像头,对工厂车间园区人员擅自离岗、玩手机、区域入侵、吸烟、劳保服不佩戴等个人行为实时检测分析,当工厂人员违规行为识别系统识别到人员违规行为立即抓拍报警,违规截图和视频保存到数据库系统生成表,推到后台人员妥善处理,及时纠正不符合操作规范的行为。
YOLOv8 算法的核心特性和改动可以归结为如下:
提供了一个全新的 SOTA 模型,包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于 YOLACT 的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求
Backbone:
骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数。
Head: Head部分较yolov5而言有两大改进:1)换成了目前主流的解耦头结构(Decoupled-Head),将分类和检测头分离 2)同时也从 Anchor-Based 换成了 Anchor-Free
Loss :1) YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner正负样本匹配方式。2)并引入了 Distribution Focal Loss(DFL)
Train:训练的数据增强部分引入了 YOLOX 中的最后 10 epoch 关闭 Mosiac 增强的操作,可以有效地提升精度
工厂人员违规行为识别系统算法,根据许多真实场景样本进行规模训练后,可以准确分析现场人员违规行为,及时向现场相关人员的发出预警信号。根据实时监控图像的数据分析系统识别,可以实现监控图像全画面范围的识别分析,划分区域周围的安全保护、绊线安全保护等。
现代目标检测器大部分都会在正负样本分配策略上面做文章,典型的如 YOLOX 的 simOTA、TOOD 的 TaskAlignedAssigner 和 RTMDet 的 DynamicSoftLabelAssigner,这类 Assigner 大都是动态分配策略,而 YOLOv5 采用的依然是静态分配策略。考虑到动态分配策略的优异性,YOLOv8 算法中则直接引用了 TOOD 的 TaskAlignedAssigner。
class Conv(nn.Module):
# 标准的卷积 参数(输入通道数, 输出通道数, 卷积核大小, 步长, 填充, 组, 扩张, 激活函数)
default_act = nn.SiLU() # 默认的激活函数
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
super().__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False) # 2维卷积,其中采用了自动填充函数。
self.bn = nn.BatchNorm2d(c2) # 使得每一个batch的特征图均满足均值为0,方差为1的分布规律
# 如果act=True 则采用默认的激活函数SiLU;如果act的类型是nn.Module,则采用传入的act; 否则不采取任何动作 (nn.Identity函数相当于f(x)=x,只用做占位,返回原始的输入)。
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
def forward(self, x): # 前向传播
return self.act(self.bn(self.conv(x))) # 采用BatchNorm
def forward_fuse(self, x): # 用于Model类的fuse函数融合 Conv + BN 加速推理,一般用于测试/验证阶段
return self.act(self.conv(x)) # 不采用BatchNorm
工厂人员违规行为识别系统对现场人员行为进行实时检测,如玩手机、着装不合规、打电话、攀高行为、闯入危险区等。工厂人员违规行为识别系统一旦发现行为问题,立即预警并抓拍存档。工厂人员违规行为识别系统对工厂人员危险行为进行全面监控和检测,提高安全作业效率,降低人力成本,提高运营效率。