目录

  • A*算法的基本原理
  • A*算法的应用场景
  • A*算法的思想
  • A*算法的定义
  • A*算法的路径规划步骤
  • A*算法路径搜索的图示演示
  • A*算法的代码举例
  • 1.定义一张定宽高的地图并设定起点和终点
  • 2.开始路径规划
  • 总结



A*算法的基本原理

将从应用场景、思想、基本的定义进行说明

A*算法的应用场景

一副地图中有坐标A和B,而A和B之间可能存在一些障碍,需要找到一条路径从A到B尽可能最短的安全路径。这样的问题就称作路径规划问题。
A*算法是处理路径规划问题的一种算法,其他的还有Dijkstra算法、贪心算法、广度优先(Bread First Search,BFS)和深度优先算法(Depth First Search,DFS)。BFS的思想就是以起点A为圆心,先搜索A周围的所有点,形成一个类似圆的搜索区域,再扩大搜索半径,直到终点B进入搜索区域内被找到;DFS的思想就是从起点A出发找沿着AB这条线的方向,并且离A点最远的点。
研究表明,A-star算法搜索效率较高。


A*算法的思想

A*算法利用估价的思想,其规划的过程如下:

  1. 在代遍历列表中(刚开始只有A点),我们在列表中查找一个估价(见估价公式)最小的点K
  2. 对点K进行一次广度优先搜索,也就是它移动到一次到的下一个坐标(上下左右、左上右上、左下右下)不包含已经遍历过的点和不能到达的点,将能查找的点添加到队列中,并将点K从队列中移除
  3. 重复1、2步骤直到到达B点,或者队列已经为空,表示没有路径可以到达点B

估价公式
F = G + H
G = 从起点A移动到下一移动位置的代价,沿着到达该位置而生成的路径。约定直行移动一次的代价是10,对角线的移动代价为14。
H


A*算法的定义

open list : 记录下所有被考虑来寻找最短路径的格子
close list : 记录下不会再被考虑的格子
Point(属性)

用来计算代价的距离:欧拉距离和曼哈顿距离

  1. 欧拉距离:
    (x1-x2)2+ (y1-y2)2
  2. 曼哈顿距离:
    |x1-x2|+ |y1-y2|

A*算法的路径规划步骤

  1. 首先定义一张定宽高的地图(定义好Point点的地图,其中有Is_Wall属性,属性标记是否有障碍物)
  2. 设定好起始点和终点(起始点A,终点为B)
  3. adaboost算法Python库函数 a*算法代码 python_自动驾驶

  4. 开始寻路
    ① 从起点A开始,把A作为一个等待检查的方格,放入到open list中(open list存放每一个等待检查的方格)
    ② 寻找起点A周围可以到达的方格(最多八个),将它们放入到open list,并设置它们的父节点为A
    ③ 从open list中删除起点A,并将A放入到close list中(close list存放的是不再需要检查的方格)
    ④ 计算open list中的方格的代价值(F)
    ⑤ 从open list中选择F最小的方格K,如果F一样,那么选择唯一一个G值最小的方格K,将其从open list中删除,放入close list中
    ⑥ 检查K所有邻近并且可达的方格
    a)障碍物和close list中的方格不考虑
    b)如果这些方格还不在open list里面,就将它们加入到open list,并且计算这些方格的F值,并设置父节点为K
    c)如果K相邻的方格C已经在open list中,计算新的路径从A到方格C(即经过K的路径),判断是否需要更新:G值是否更低一点
    如果新的G值更低,则修改父节点为方格K,重新计算F值,H值不需要改变,因为方格到达目标点的预计消耗是固定的。
    如果新的G值比较高,则说明新的路径消耗更高,则值不做改变(G值不变也不更新)
    ⑦ 继续从open list中找出F值最小的,从open list中删除,添加到close list,再继续找出周围可以到达的方块,如此循环。
    ⑧ 结束判断:当open list中出现终点B时,说明路径已经找到;当open list中没有了数据,则说明没有合适路径。

A*算法路径搜索的图示演示

每一个方格的表示如下:

adaboost算法Python库函数 a*算法代码 python_自动驾驶_02


左上角代表F,即代价值;左下角代表G,右下角代表H,箭头指向当前节点的父节点

距离采用曼哈顿距离。

  1. 计算邻近点的代价,它们的父节点都是起点,找出最小估价,为右上角的方块。可以规定估价计算的顺序。
  2. adaboost算法Python库函数 a*算法代码 python_自动驾驶_03

  3. 对上个步骤选出来的右上角的方块(紫色方块)的八个方向的坐标进行估值(已经估值的以及障碍不用计算),G值最小最后访问的点为父节点。
  4. adaboost算法Python库函数 a*算法代码 python_图搜索算法_04

  5. 对上个步骤的紫色方块放入close list,即深绿色方块,重新寻找F值最小的方块。
  6. adaboost算法Python库函数 a*算法代码 python_自动驾驶_05

  7. 重复上述步骤
  8. adaboost算法Python库函数 a*算法代码 python_图搜索算法_06


  9. adaboost算法Python库函数 a*算法代码 python_图搜索算法_07


  10. adaboost算法Python库函数 a*算法代码 python_自动驾驶_08


  11. adaboost算法Python库函数 a*算法代码 python_python_09


  12. adaboost算法Python库函数 a*算法代码 python_python_10


  13. adaboost算法Python库函数 a*算法代码 python_adaboost算法Python库函数_11


  14. adaboost算法Python库函数 a*算法代码 python_adaboost算法Python库函数_12

  15. 循环结束
    循环结束的条件就是,终点在open list中,即找到了终点或者open list中没有了值,这就说明没有找到路径,由此终点依次查找它们的父节点直到起点,将坐标点逆序,就是最短安全路径。
  16. adaboost算法Python库函数 a*算法代码 python_算法_13


A*算法的代码举例

在了解了以上的原理与步骤后,开始组织程序

1.定义一张定宽高的地图并设定起点和终点

这个步骤要求定义一个定宽高的地图,并且在地图中要标明障碍物,利用一个二维数组来定义,并且需要定义是否有障碍
根据上面分析用的图,可以发现是一个10×10的方形区域
规定:

数字

0

1

3

4

6

含义

障碍物

可以通行

open list

close list

最后的路径

代码如下:

#coding=utf-8
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt

map_grid=[[1 for j in range(0,10)] for i in range(0,10)]  #定义列表
map_grid = np.array(map_grid)  #将列表转化为数组,因为只有数组才有维度的概念,方便切片
map_grid[4:8,4]=0   #障碍物
map_grid[2:4,6]=0
map_grid[4,2]=3     #起点
map_grid[6,8]=6     #终点
plt.imshow(map_grid,cmap=plt.cm.hot,interpolation='nearest',vmin=0,vmax=10)  #绘制热力图
plt.colorbar()
plt.xlim(-1,10)     #x轴的范围
plt.ylim(-1,10)
my_x_ticks = np.arange(0,11,1)   #x轴标号的范围
my_y_ticks = np.arange(0,11,1)
plt.xticks(my_x_ticks)
plt.yticks(my_y_ticks)
plt.grid(True)   #开启栅格  可以不开启
plt.show()  #可视化

效果:

与上述分析的地图一致

adaboost算法Python库函数 a*算法代码 python_自动驾驶_14


将其打包成一个函数

def draw_effect(map_grid):
    plt.imshow(map_grid, cmap=plt.cm.hot, interpolation='nearest', vmin=0, vmax=10)  # 绘制热力图
    plt.colorbar()
    plt.xlim(-1, 10)  # x轴的范围
    plt.ylim(-1, 10)
    my_x_ticks = np.arange(0, 11, 1)  # x轴标号的范围
    my_y_ticks = np.arange(0, 11, 1)
    plt.xticks(my_x_ticks)
    plt.yticks(my_y_ticks)
    plt.grid(True)  # 开启栅格  可以不开启
    plt.show()  # 可视化

2.开始路径规划

在这个部分需要设置两个列表open_list,close_list,并且不断更新上面定义的二维数组中的值 ①从起点A开始,把A作为一个等待检查的方格,放入open list中(open list存放每一个等待检查的方格)

open_list = [4,2]
G = 0
H = (abs(xn - x0)+abs(yn - y0))*10
F = G+H
open_list = {"x":4,"y":2,"Fvalue":F,"Gvalue":G,"Hvalue":H,"f_x":None,"f_y":None}
open_list = pd.DataFrame(open_list,index=[0])
#分别代表x,y,F值,G值,H值,父节点x,父节点y

②寻找起点A周围可以到达的方格,放入open_list中,并设置父节点,并计算F、G、H的值
,将此寻周围方格的过程打包为一个函数:如果节点K的邻节点在open_list,如果新的G值更小就更新G值,并重新计算F值,并更改K的父节点;否则不变

#②寻找起点A周围可以到达的方格,放入openlist中,并设置其父节点为A,并计算出F值(包装成一个函数来实现)
#close_list中不搜索,障碍不搜索,已经搜索过(在openlist里面)的不再搜索
def find_way(open_list,close_list,x0,y0):
    #定义一个搜索顺序,右->右上->上->左上->左->左下->下->右下
    m = close_list.iloc[close_list.index[(close_list['x'] == x0) & (close_list['y'] == y0)], 3].values.astype(int)
    if y0 + 1 < 10 and map_grid[x0, y0 + 1] != 0 and map_grid[x0, y0 + 1] !=4:
        x1 = x0
        y1 = y0 + 1
        G = 10 + m
        H = (abs(xn - x1) + abs(yn - y1)) * 10
        F = G + H
        if map_grid[x1, y1] == 3:
            n = open_list.iloc[open_list.index[(open_list['x'] == x1) & (open_list['y'] == y1)], 3].values.astype(int)
            if G < n:
                # print(len(open_list.index))
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Gvalue'] = G
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Fvalue'] = F
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = x0
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = y0

        else:
            insertRow = {"x": x1, "y": y1, "Fvalue": F, "Gvalue": G, "Hvalue": H, "f_x": x0, "f_y": y0}
            insertRow = pd.DataFrame(insertRow, index=[0])
            # print(len(open_list.index))
            open_list = pd.concat([open_list, insertRow])
            open_list = open_list.reset_index(drop=True)  # 重新排列index(索引)
            # open_list.loc[len(open_list.index)]=[x1,y1,F,G,H,x0,y0]
            map_grid[x1, y1] = 3  # openlist里面的坐标所对应的值设置为3,方便绘图

    if y0 + 1 < 10 and x0 + 1 < 10 and map_grid[x0 + 1, y0 + 1] != 0 and map_grid[x0+1, y0 + 1] !=4:
        G = 14 + m
        x1 = x0+1
        y1 = y0 + 1
        H = (abs(xn - x1) + abs(yn - y1)) * 10
        F = G + H
        if map_grid[x1, y1] == 3:
            n = open_list.iloc[open_list.index[(open_list['x'] == x1) & (open_list['y'] == y1)], 3].values.astype(int)
            if G < n:
                # print(len(open_list.index))
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Gvalue'] = G
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Fvalue'] = F
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = x0
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = y0

        else:
            insertRow = {"x": x1, "y": y1, "Fvalue": F, "Gvalue": G, "Hvalue": H, "f_x": x0, "f_y": y0}
            insertRow = pd.DataFrame(insertRow, index=[0])
            # print(len(open_list.index))
            open_list = pd.concat([open_list, insertRow])
            open_list = open_list.reset_index(drop=True)  # 重新排列index(索引)
            # open_list.loc[len(open_list.index)]=[x1,y1,F,G,H,x0,y0]
            map_grid[x1, y1] = 3  # openlist里面的坐标所对应的值设置为3,方便绘图

        #pen_list.loc[len(open_list.index)] = [x1, y1, F, G, H, x0, y0]


    if x0 + 1 < 10 and map_grid[x0 + 1, y0] != 0 and map_grid[x0 + 1, y0] !=4:
        G = 10 + m
        x1 = x0+1
        y1 = y0
        H = (abs(xn - x1) + abs(yn - y1)) * 10
        F = G + H
        if map_grid[x1, y1] == 3:
            n = open_list.iloc[open_list.index[(open_list['x'] == x1) & (open_list['y'] == y1)], 3].values.astype(int)
            if G < n:
                # print(len(open_list.index))
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Gvalue'] = G
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Fvalue'] = F
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = x0
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = y0

        else:
            insertRow = {"x": x1, "y": y1, "Fvalue": F, "Gvalue": G, "Hvalue": H, "f_x": x0, "f_y": y0}
            insertRow = pd.DataFrame(insertRow, index=[0])
            # print(len(open_list.index))
            open_list = pd.concat([open_list, insertRow])
            open_list = open_list.reset_index(drop=True)  # 重新排列index(索引)
            # open_list.loc[len(open_list.index)]=[x1,y1,F,G,H,x0,y0]
            map_grid[x1, y1] = 3  # openlist里面的坐标所对应的值设置为3,方便绘图

    if x0 + 1 < 10 and y0 -1 >=0 and map_grid[x0 + 1, y0 - 1] != 0 and map_grid[x0 + 1, y0 - 1] !=4:
        G = 14 + m
        x1 = x0+1
        y1 = y0-1
        H = (abs(xn - x1) + abs(yn - y1)) * 10
        F = G + H
        if map_grid[x1, y1] == 3:
            n = open_list.iloc[open_list.index[(open_list['x'] == x1) & (open_list['y'] == y1)], 3].values.astype(int)
            if G < n:
                # print(len(open_list.index))
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Gvalue'] = G
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Fvalue'] = F
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = x0
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = y0

        else:
            insertRow = {"x": x1, "y": y1, "Fvalue": F, "Gvalue": G, "Hvalue": H, "f_x": x0, "f_y": y0}
            insertRow = pd.DataFrame(insertRow, index=[0])
            # print(len(open_list.index))
            open_list = pd.concat([open_list, insertRow])
            open_list = open_list.reset_index(drop=True)  # 重新排列index(索引)
            # open_list.loc[len(open_list.index)]=[x1,y1,F,G,H,x0,y0]
            map_grid[x1, y1] = 3  # openlist里面的坐标所对应的值设置为3,方便绘图

    if y0 - 1 >= 0 and map_grid[x0, y0 - 1] != 0 and map_grid[x0, y0 - 1] !=4:
        G = 10 + m
        x1 = x0
        y1 = y0 - 1
        H = (abs(xn - x1) + abs(yn - y1)) * 10
        F = G + H
        if map_grid[x1, y1] == 3:
            n = open_list.iloc[open_list.index[(open_list['x'] == x1) & (open_list['y'] == y1)], 3].values.astype(int)
            if G < n:
                # print(len(open_list.index))
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Gvalue'] = G
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Fvalue'] = F
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = x0
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = y0

        else:
            insertRow = {"x": x1, "y": y1, "Fvalue": F, "Gvalue": G, "Hvalue": H, "f_x": x0, "f_y": y0}
            insertRow = pd.DataFrame(insertRow, index=[0])
            # print(len(open_list.index))
            open_list = pd.concat([open_list, insertRow])
            open_list = open_list.reset_index(drop=True)  # 重新排列index(索引)
            # open_list.loc[len(open_list.index)]=[x1,y1,F,G,H,x0,y0]
            map_grid[x1, y1] = 3  # openlist里面的坐标所对应的值设置为3,方便绘图

    if y0 - 1 >= 0 and x0 - 1 >= 0  and map_grid[x0 - 1, y0 - 1] != 0 and map_grid[x0 - 1, y0 - 1] !=4:
        G = 14 + m
        x1 = x0-1
        y1 = y0 - 1
        H = (abs(xn - x1) + abs(yn - y1)) * 10
        F = G + H
        if map_grid[x1, y1] == 3:
            n = open_list.iloc[open_list.index[(open_list['x'] == x1) & (open_list['y'] == y1)], 3].values.astype(int)
            if G < n:
                # print(len(open_list.index))
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Gvalue'] = G
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Fvalue'] = F
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = x0
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = y0

        else:
            insertRow = {"x": x1, "y": y1, "Fvalue": F, "Gvalue": G, "Hvalue": H, "f_x": x0, "f_y": y0}
            insertRow = pd.DataFrame(insertRow, index=[0])
            # print(len(open_list.index))
            open_list = pd.concat([open_list, insertRow])
            open_list = open_list.reset_index(drop=True)  # 重新排列index(索引)
            # open_list.loc[len(open_list.index)]=[x1,y1,F,G,H,x0,y0]
            map_grid[x1, y1] = 3  # openlist里面的坐标所对应的值设置为3,方便绘图

    if x0 - 1 >= 0 and map_grid[x0 - 1, y0] != 0 and map_grid[x0 - 1, y0] !=4:
        G = 10 + m
        x1 = x0-1
        y1 = y0
        H = (abs(xn - x1) + abs(yn - y1)) * 10
        F = G + H
        if map_grid[x1, y1] == 3:
            n = open_list.iloc[open_list.index[(open_list['x'] == x1) & (open_list['y'] == y1)], 3].values.astype(int)
            if G < n:
                # print(len(open_list.index))
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Gvalue'] = G
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Fvalue'] = F
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = x0
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = y0

        else:
            insertRow = {"x": x1, "y": y1, "Fvalue": F, "Gvalue": G, "Hvalue": H, "f_x": x0, "f_y": y0}
            insertRow = pd.DataFrame(insertRow, index=[0])
            # print(len(open_list.index))
            open_list = pd.concat([open_list, insertRow])
            open_list = open_list.reset_index(drop=True)  # 重新排列index(索引)
            # open_list.loc[len(open_list.index)]=[x1,y1,F,G,H,x0,y0]
            map_grid[x1, y1] = 3  # openlist里面的坐标所对应的值设置为3,方便绘图

    if y0 + 1 < 10 and x0 - 1 >=0 and map_grid[x0 - 1, y0 + 1] != 0 and map_grid[x0 - 1, y0 + 1] !=4:
        G = 14 + m
        x1 = x0-1
        y1 = y0 + 1
        H = (abs(xn - x1) + abs(yn - y1)) * 10
        F = G + H
        if map_grid[x1, y1] == 3:
            n = open_list.iloc[open_list.index[(open_list['x'] == x1) & (open_list['y'] == y1)], 3].values.astype(int)
            if G < n:
                # print(len(open_list.index))
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Gvalue'] = G
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Fvalue'] = F
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = x0
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = y0

        else:
            insertRow = {"x": x1, "y": y1, "Fvalue": F, "Gvalue": G, "Hvalue": H, "f_x": x0, "f_y": y0}
            insertRow = pd.DataFrame(insertRow, index=[0])
            # print(len(open_list.index))
            open_list = pd.concat([open_list, insertRow])
            open_list = open_list.reset_index(drop=True)  # 重新排列index(索引)
            # open_list.loc[len(open_list.index)]=[x1,y1,F,G,H,x0,y0]
            map_grid[x1, y1] = 3  # openlist里面的坐标所对应的值设置为3,方便绘图

    return open_list

③从open_list中删除起点A,并将A放入close_list中

#③从open list中删除起点A,并将A放入close list中(close list存放不需要再检查的方格)
insertRow = open_list.iloc[open_list.index[(open_list['x'] == x0) & (open_list['y'] == y0)]]
close_list = insertRow
close_list = pd.DataFrame(close_list)
# print(open_list)                        #此时openlist里面就有所有可以到达的方格
open_list = open_list.drop(open_list.index[(open_list['x'] == x0) & (open_list['y'] == y0)])  # 删除起点A
open_list = open_list.reset_index(drop=True)  # 重新排列index(索引)
map_grid[x0, y0] = 4  # close_list

open_list = find_way(open_list,close_list,x0,y0)                #调用该函数
open_list = pd.DataFrame(open_list)

④从open_list中选择F最小的方格K,如果F最小的方格不只一个,那么优先搜索G比较大的方格,将其从open_list中删除,放入close_list,如果G一样大,那么就只是搜索列表中的第一个。

#④从open_list中选择F最小的方格K,如果F最小的方格不只一个,那么优先搜索G比较大的方格,将其从open_list中删除,放入close_list
def move_min_to_close(open_list,close_list,x0,y0):
    insertRow = open_list.loc[open_list.index[(open_list['Fvalue'] == open_list['Fvalue'].min())]]
    insertRow = insertRow.loc[insertRow.index[(insertRow['Gvalue'] == insertRow['Gvalue'].min())]]
    insertRow = insertRow.loc[[insertRow.index[0]]]
    open_list = open_list.drop(insertRow.index)  # 删除起点K
    open_list = open_list.reset_index(drop=True)  # 重新排列index(索引)
    close_list = pd.concat([close_list, insertRow])
    close_list = close_list.reset_index(drop=True)  # 重新排列index(索引)
    insertRow = insertRow.reset_index(drop=True)  # 重新排列index(索引)
    x0 = insertRow.iloc[0, 0]
    y0 = insertRow.iloc[0, 1]
    return [open_list,close_list,x0,y0]

⑤循环上述步骤,找出F最小的,找出周围可以到达的方块,从open list中删除,添加到close list;
循环结束的条件:当open list中出现终点B时,说明路径已经找到;当open list中没有了数据,则说明没有合适路径

#⑤循环上述步骤,找出F最小的,找出周围可以到达的方块,从open list中删除,添加到close list
#循环结束的条件:当open list中出现终点B时,说明路径已经找到;当open list中没有了数据,则说明没有合适路径
while (0 not in open_list['Hvalue'].values.astype(int) and pd.isnull(open_list.loc[0,'x'])==False):

    [open_list, close_list,x0,y0] = move_min_to_close(open_list, close_list, x0, y0)
    map_grid[x0, y0] = 4  # close_list
    open_list = pd.DataFrame(open_list)
    close_list = pd.DataFrame(close_list)
    open_list = find_way(open_list, close_list, x0, y0)
    #print(x0,y0)

⑥总结路径,并绘制图
当open list中出现终点B时,说明路径已经找到,绘制热力图,并打印路径节点;
当open list中没有了数据,则说明没有合适路径,绘制热力图,并发送‘No way’

if 0 in open_list['Hvalue'].values.astype(int):
    print("find it")
    list = [[xn,yn]]
    [x,y] = open_list.loc[((open_list['x'].values == xn) & (open_list['y'].values == yn)), ['f_x','f_y']].values.astype(int)[0]
    list.append([x,y])
    map_grid[x, y] = 6  # 终点
    while close_list.loc[((close_list['x'].values == x) & (close_list['y'].values == y)), 'f_x'].values[0]!=None:
        [x,y] = close_list.loc[((close_list['x'].values == x) & (close_list['y'].values == y)), ['f_x','f_y']].values.astype(int)[0]
        map_grid[x, y] = 6  # 终点
        list.append([x,y])
    draw_effect(map_grid)
    print(list)

if(pd.isnull(open_list.loc[0,'x'])==True):
    print("No way")
    draw_effect(map_grid)

效果图:

adaboost算法Python库函数 a*算法代码 python_算法_15


adaboost算法Python库函数 a*算法代码 python_算法_16


总程序附录

#coding=utf-8
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import warnings

warnings.filterwarnings("ignore")

#1.建立一个地图,明确障碍物和能够同行的路和起点、终点
map_grid=[[1 for j in range(0,10)] for i in range(0,10)]  #定义列表
map_grid = np.array(map_grid)  #将列表转化为数组,因为只有数组才有维度的概念,方便切片
map_grid[4:8,4]=0   #障碍物
map_grid[2:4,6]=0
map_grid[4,2]=1     #起点
map_grid[6,8]=6     #终点
x0 = 4
y0 = 2
xn = 6
yn = 8
i=0
#建图完成,其中map_grid里面就是每个方格的属性
def draw_effect(map_grid):
    plt.imshow(map_grid, cmap=plt.cm.hot, interpolation='nearest', vmin=0, vmax=10)  # 绘制热力图
    plt.colorbar()
    plt.xlim(-1, 10)  # x轴的范围
    plt.ylim(-1, 10)
    my_x_ticks = np.arange(0, 11, 1)  # x轴标号的范围
    my_y_ticks = np.arange(0, 11, 1)
    plt.xticks(my_x_ticks)
    plt.yticks(my_y_ticks)
    plt.grid(True)  # 开启栅格  可以不开启
    plt.show()  # 可视化


#2.开始寻路

#①从起点A开始,把A作为一个等待检查的方格,放入open list中(存放每一个等待检查的方格)
open_list = [4,2]
G = 0
H = (abs(xn - x0)+abs(yn - y0))*10
F = G+H
open_list = {"x":4,"y":2,"Fvalue":F,"Gvalue":G,"Hvalue":H,"f_x":None,"f_y":None}
open_list = pd.DataFrame(open_list,index=[0])
#分别代表x,y,F值,G值,H值,父节点x,父节点y
#print(open_list.iloc[open_list.index[(open_list['x'] == x0) & (open_list['y'] == y0)], 3])


#②寻找起点A周围可以到达的方格,放入openlist中,并设置其父节点为A,并计算出F值(包装成一个函数来实现)
#close_list中不搜索,障碍不搜索,已经搜索过(在openlist里面)的不再搜索
def find_way(open_list,close_list,x0,y0):
    #定义一个搜索顺序,右->右上->上->左上->左->左下->下->右下
    m = close_list.iloc[close_list.index[(close_list['x'] == x0) & (close_list['y'] == y0)], 3].values.astype(int)
    if y0 + 1 < 10 and map_grid[x0, y0 + 1] != 0 and map_grid[x0, y0 + 1] !=4:
        x1 = x0
        y1 = y0 + 1
        G = 10 + m
        H = (abs(xn - x1) + abs(yn - y1)) * 10
        F = G + H
        if map_grid[x1, y1] == 3:
            n = open_list.iloc[open_list.index[(open_list['x'] == x1) & (open_list['y'] == y1)], 3].values.astype(int)
            if G < n:
                # print(len(open_list.index))
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Gvalue'] = G
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Fvalue'] = F
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = x0
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = y0

        else:
            insertRow = {"x": x1, "y": y1, "Fvalue": F, "Gvalue": G, "Hvalue": H, "f_x": x0, "f_y": y0}
            insertRow = pd.DataFrame(insertRow, index=[0])
            # print(len(open_list.index))
            open_list = pd.concat([open_list, insertRow])
            open_list = open_list.reset_index(drop=True)  # 重新排列index(索引)
            # open_list.loc[len(open_list.index)]=[x1,y1,F,G,H,x0,y0]
            map_grid[x1, y1] = 3  # openlist里面的坐标所对应的值设置为3,方便绘图

    if y0 + 1 < 10 and x0 + 1 < 10 and map_grid[x0 + 1, y0 + 1] != 0 and map_grid[x0+1, y0 + 1] !=4:
        G = 14 + m
        x1 = x0+1
        y1 = y0 + 1
        H = (abs(xn - x1) + abs(yn - y1)) * 10
        F = G + H
        if map_grid[x1, y1] == 3:
            n = open_list.iloc[open_list.index[(open_list['x'] == x1) & (open_list['y'] == y1)], 3].values.astype(int)
            if G < n:
                # print(len(open_list.index))
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Gvalue'] = G
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Fvalue'] = F
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = x0
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = y0

        else:
            insertRow = {"x": x1, "y": y1, "Fvalue": F, "Gvalue": G, "Hvalue": H, "f_x": x0, "f_y": y0}
            insertRow = pd.DataFrame(insertRow, index=[0])
            # print(len(open_list.index))
            open_list = pd.concat([open_list, insertRow])
            open_list = open_list.reset_index(drop=True)  # 重新排列index(索引)
            # open_list.loc[len(open_list.index)]=[x1,y1,F,G,H,x0,y0]
            map_grid[x1, y1] = 3  # openlist里面的坐标所对应的值设置为3,方便绘图

        #pen_list.loc[len(open_list.index)] = [x1, y1, F, G, H, x0, y0]


    if x0 + 1 < 10 and map_grid[x0 + 1, y0] != 0 and map_grid[x0 + 1, y0] !=4:
        G = 10 + m
        x1 = x0+1
        y1 = y0
        H = (abs(xn - x1) + abs(yn - y1)) * 10
        F = G + H
        if map_grid[x1, y1] == 3:
            n = open_list.iloc[open_list.index[(open_list['x'] == x1) & (open_list['y'] == y1)], 3].values.astype(int)
            if G < n:
                # print(len(open_list.index))
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Gvalue'] = G
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Fvalue'] = F
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = x0
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = y0

        else:
            insertRow = {"x": x1, "y": y1, "Fvalue": F, "Gvalue": G, "Hvalue": H, "f_x": x0, "f_y": y0}
            insertRow = pd.DataFrame(insertRow, index=[0])
            # print(len(open_list.index))
            open_list = pd.concat([open_list, insertRow])
            open_list = open_list.reset_index(drop=True)  # 重新排列index(索引)
            # open_list.loc[len(open_list.index)]=[x1,y1,F,G,H,x0,y0]
            map_grid[x1, y1] = 3  # openlist里面的坐标所对应的值设置为3,方便绘图

    if x0 + 1 < 10 and y0 -1 >=0 and map_grid[x0 + 1, y0 - 1] != 0 and map_grid[x0 + 1, y0 - 1] !=4:
        G = 14 + m
        x1 = x0+1
        y1 = y0-1
        H = (abs(xn - x1) + abs(yn - y1)) * 10
        F = G + H
        if map_grid[x1, y1] == 3:
            n = open_list.iloc[open_list.index[(open_list['x'] == x1) & (open_list['y'] == y1)], 3].values.astype(int)
            if G < n:
                # print(len(open_list.index))
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Gvalue'] = G
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Fvalue'] = F
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = x0
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = y0

        else:
            insertRow = {"x": x1, "y": y1, "Fvalue": F, "Gvalue": G, "Hvalue": H, "f_x": x0, "f_y": y0}
            insertRow = pd.DataFrame(insertRow, index=[0])
            # print(len(open_list.index))
            open_list = pd.concat([open_list, insertRow])
            open_list = open_list.reset_index(drop=True)  # 重新排列index(索引)
            # open_list.loc[len(open_list.index)]=[x1,y1,F,G,H,x0,y0]
            map_grid[x1, y1] = 3  # openlist里面的坐标所对应的值设置为3,方便绘图

    if y0 - 1 >= 0 and map_grid[x0, y0 - 1] != 0 and map_grid[x0, y0 - 1] !=4:
        G = 10 + m
        x1 = x0
        y1 = y0 - 1
        H = (abs(xn - x1) + abs(yn - y1)) * 10
        F = G + H
        if map_grid[x1, y1] == 3:
            n = open_list.iloc[open_list.index[(open_list['x'] == x1) & (open_list['y'] == y1)], 3].values.astype(int)
            if G < n:
                # print(len(open_list.index))
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Gvalue'] = G
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Fvalue'] = F
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = x0
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = y0

        else:
            insertRow = {"x": x1, "y": y1, "Fvalue": F, "Gvalue": G, "Hvalue": H, "f_x": x0, "f_y": y0}
            insertRow = pd.DataFrame(insertRow, index=[0])
            # print(len(open_list.index))
            open_list = pd.concat([open_list, insertRow])
            open_list = open_list.reset_index(drop=True)  # 重新排列index(索引)
            # open_list.loc[len(open_list.index)]=[x1,y1,F,G,H,x0,y0]
            map_grid[x1, y1] = 3  # openlist里面的坐标所对应的值设置为3,方便绘图

    if y0 - 1 >= 0 and x0 - 1 >= 0  and map_grid[x0 - 1, y0 - 1] != 0 and map_grid[x0 - 1, y0 - 1] !=4:
        G = 14 + m
        x1 = x0-1
        y1 = y0 - 1
        H = (abs(xn - x1) + abs(yn - y1)) * 10
        F = G + H
        if map_grid[x1, y1] == 3:
            n = open_list.iloc[open_list.index[(open_list['x'] == x1) & (open_list['y'] == y1)], 3].values.astype(int)
            if G < n:
                # print(len(open_list.index))
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Gvalue'] = G
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Fvalue'] = F
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = x0
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = y0

        else:
            insertRow = {"x": x1, "y": y1, "Fvalue": F, "Gvalue": G, "Hvalue": H, "f_x": x0, "f_y": y0}
            insertRow = pd.DataFrame(insertRow, index=[0])
            # print(len(open_list.index))
            open_list = pd.concat([open_list, insertRow])
            open_list = open_list.reset_index(drop=True)  # 重新排列index(索引)
            # open_list.loc[len(open_list.index)]=[x1,y1,F,G,H,x0,y0]
            map_grid[x1, y1] = 3  # openlist里面的坐标所对应的值设置为3,方便绘图

    if x0 - 1 >= 0 and map_grid[x0 - 1, y0] != 0 and map_grid[x0 - 1, y0] !=4:
        G = 10 + m
        x1 = x0-1
        y1 = y0
        H = (abs(xn - x1) + abs(yn - y1)) * 10
        F = G + H
        if map_grid[x1, y1] == 3:
            n = open_list.iloc[open_list.index[(open_list['x'] == x1) & (open_list['y'] == y1)], 3].values.astype(int)
            if G < n:
                # print(len(open_list.index))
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Gvalue'] = G
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Fvalue'] = F
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = x0
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = y0

        else:
            insertRow = {"x": x1, "y": y1, "Fvalue": F, "Gvalue": G, "Hvalue": H, "f_x": x0, "f_y": y0}
            insertRow = pd.DataFrame(insertRow, index=[0])
            # print(len(open_list.index))
            open_list = pd.concat([open_list, insertRow])
            open_list = open_list.reset_index(drop=True)  # 重新排列index(索引)
            # open_list.loc[len(open_list.index)]=[x1,y1,F,G,H,x0,y0]
            map_grid[x1, y1] = 3  # openlist里面的坐标所对应的值设置为3,方便绘图

    if y0 + 1 < 10 and x0 - 1 >=0 and map_grid[x0 - 1, y0 + 1] != 0 and map_grid[x0 - 1, y0 + 1] !=4:
        G = 14 + m
        x1 = x0-1
        y1 = y0 + 1
        H = (abs(xn - x1) + abs(yn - y1)) * 10
        F = G + H
        if map_grid[x1, y1] == 3:
            n = open_list.iloc[open_list.index[(open_list['x'] == x1) & (open_list['y'] == y1)], 3].values.astype(int)
            if G < n:
                # print(len(open_list.index))
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Gvalue'] = G
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Fvalue'] = F
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = x0
                open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = y0

        else:
            insertRow = {"x": x1, "y": y1, "Fvalue": F, "Gvalue": G, "Hvalue": H, "f_x": x0, "f_y": y0}
            insertRow = pd.DataFrame(insertRow, index=[0])
            # print(len(open_list.index))
            open_list = pd.concat([open_list, insertRow])
            open_list = open_list.reset_index(drop=True)  # 重新排列index(索引)
            # open_list.loc[len(open_list.index)]=[x1,y1,F,G,H,x0,y0]
            map_grid[x1, y1] = 3  # openlist里面的坐标所对应的值设置为3,方便绘图

    return open_list


#③从open list中删除起点A,并将A放入close list中(close list存放不需要再检查的方格)
insertRow = open_list.iloc[open_list.index[(open_list['x'] == x0) & (open_list['y'] == y0)]]
close_list = insertRow
close_list = pd.DataFrame(close_list)
# print(open_list)                        #此时openlist里面就有所有可以到达的方格
open_list = open_list.drop(open_list.index[(open_list['x'] == x0) & (open_list['y'] == y0)])  # 删除起点A
open_list = open_list.reset_index(drop=True)  # 重新排列index(索引)
map_grid[x0, y0] = 4  # close_list

open_list = find_way(open_list,close_list,x0,y0)                #调用该函数
open_list = pd.DataFrame(open_list)


#④从open_list中选择F最小的方格K,如果F最小的方格不只一个,那么优先搜索G比较大的方格,将其从open_list中删除,放入close_list
def move_min_to_close(open_list,close_list,x0,y0):
    insertRow = open_list.loc[open_list.index[(open_list['Fvalue'] == open_list['Fvalue'].min())]]
    insertRow = insertRow.loc[insertRow.index[(insertRow['Gvalue'] == insertRow['Gvalue'].min())]]
    insertRow = insertRow.loc[[insertRow.index[0]]]
    open_list = open_list.drop(insertRow.index)  # 删除起点K
    open_list = open_list.reset_index(drop=True)  # 重新排列index(索引)
    close_list = pd.concat([close_list, insertRow])
    close_list = close_list.reset_index(drop=True)  # 重新排列index(索引)
    insertRow = insertRow.reset_index(drop=True)  # 重新排列index(索引)
    x0 = insertRow.iloc[0, 0]
    y0 = insertRow.iloc[0, 1]
    return [open_list,close_list,x0,y0]

#print(open_list)
#⑤循环上述步骤,找出F最小的,找出周围可以到达的方块,从open list中删除,添加到close list
#循环结束的条件:当open list中出现终点B时,说明路径已经找到;当open list中没有了数据,则说明没有合适路径
while (0 not in open_list['Hvalue'].values.astype(int) and pd.isnull(open_list.loc[0,'x'])==False):

    [open_list, close_list,x0,y0] = move_min_to_close(open_list, close_list, x0, y0)
    map_grid[x0, y0] = 4  # close_list
    open_list = pd.DataFrame(open_list)
    close_list = pd.DataFrame(close_list)
    open_list = find_way(open_list, close_list, x0, y0)
    #print(x0,y0)

if 0 in open_list['Hvalue'].values.astype(int):
    print("find it")
    list = [[xn,yn]]
    [x,y] = open_list.loc[((open_list['x'].values == xn) & (open_list['y'].values == yn)), ['f_x','f_y']].values.astype(int)[0]
    list.append([x,y])
    map_grid[x, y] = 6  # 终点
    while close_list.loc[((close_list['x'].values == x) & (close_list['y'].values == y)), 'f_x'].values[0]!=None:
        [x,y] = close_list.loc[((close_list['x'].values == x) & (close_list['y'].values == y)), ['f_x','f_y']].values.astype(int)[0]
        map_grid[x, y] = 6  # 终点
        list.append([x,y])
    draw_effect(map_grid)
    print(list)

if(pd.isnull(open_list.loc[0,'x'])==True):
    print("No way")
    draw_effect(map_grid)

总结

程序是自己一句一句写的,没有参考别人的程序,看着有点复杂,其实只要花时间读一下代码,很容易理解,适合初学者。但总算把A*捋清楚了,也学会了python里面list,dataframe,array的索引和用法。
接下来准备写dijkstra算法。

参考文献:

  1. python栅格地图上路径规划作图
  2. A*算法(超级详细讲解,附有举例的详细手写步骤)
  3. 寻路算法——A*算法详解并附带实现代码
  4. A*算法详解一看就懂(python)