引言
降维是对数据高维度特征的一种预处理方法。降维是将高维度的数据保留下最重要的一些特征,去除噪声和不重要的特征,从而实现提升数据处理速度的目的。在实际的生产和应用中,降维在一定的信息损失范围内,可以为我们节省大量的时间和成本。降维也成为了应用非常广泛的数据预处理方法。
降维具有如下一些优点:
(1)使得数据集更易使用
(2)降低算法的计算开销
(3)去除噪声
(4)使得结果容易理解
一、常见的降维方法
1.1、主成分分析( Principal Component Analysis, PCA)。
在PCA中,数据从原来的坐标系转换到了新的坐标系,新坐标系的选择是由数据本身决定的。第一个新坐标轴选择的是原始数据中方差最大的方向,第二个新坐标轴的选择和第一个坐标轴正交且具有最大方差的方向。该过程一直重复, 重复次数为原始数据中特征的数目。我们会发现,大部分方差都包含在最前面的几个新坐标轴中。因此,我们可以忽略余下的坐标轴,即对数据进行了降维处理。
1.2、因子分析( Factor Analysis )。
在因子分析中,我们假设在观察数据的生成中有一些观察不到的隐变量( latent variable )。假设观察数据是这些隐变量和某些噪声的线性
组合。那么隐变量的数据可能比观察数据的数目少,也就是说通过找到隐变量就可以实现数据的降维。因子分析已经应用于社会科学、金融和其他领域中了。
1.3、独立成分分析( Independent Component Analysis, ICA )。
ICA假设数据是从N个数据源生成的,这一点和因子分析有些类似。假设数据为多个数据源的混合观察结果,这些数据源之间在统计.上是相互独立的,而在PCA中只假设数据是不相关的。同因子分析一样,如果数据源的数目少于观察数据的数目,则可以实现降维过程。