最近一直在做图片数据集,积累了很多心得。我把我所使用的python脚本全部拿出来,当然这些脚本大部分网上都有,只不过比较分散。
我已经把所有代码上传到github上,觉得写的好的话,请给我一个star
https://github.com/gzz1529657064/Python-scripts-used-to-make-datasets
由于我的数据集是在拍摄路面的一些物体。因此分为视频和图片两种。视频分辨率1920x1080,帧率为60fps,图片分辨率为1920x1080。光拍摄图片比较慢,拍摄视频获取图片速度很快,毕竟可以将视频分解成帧,这样就可以在短时间内获取大量图片。顺便说一句,录制视频的时候可以缓慢的上下、左右移动镜头,这样得到的图片数据比较丰富。不是那种高度重复的
1. 视频分解为帧 video_to_picture.py
import cv2
vc = cv2.VideoCapture('E:/HDV-2019-5-8/Movie/20190508_0095.MP4')
c=0
rval=vc.isOpened()
timeF = 30
while rval:
c = c + 1
rval, frame = vc.read()
if (c % timeF == 0):
cv2.imwrite('E:/HDV-2019-5-8/digital_light/95/'+str(c).zfill(5) + '.jpg', frame)
cv2.waitKey(1)
vc.release()
其中 timeF 表示帧率,你也可以改小一点。一秒中获取2帧到4帧左右;zfill(5):表示图片从00000~99999,数字的位数。如果视频很长,可以把5调大一点。
2. 手动删除不需要的图片
3. 按照VOC数据集的格式。详情请看我上篇博客 : 在Ubuntu内制作自己的VOC数据集
4. 把所有图片放入JPEGImages文件中,后缀名一般为 .jpg .png .JPG。需要批量重命名文件夹中图片文件。使用rename.py
# -*- coding:utf8 -*-
import os
class BatchRename():
'''
批量重命名文件夹中的图片文件
'''
def __init__(self):
self.path = '/home/z/work/train' #存放图片的文件夹路径
def rename(self):
filelist = os.listdir(self.path)
total_num = len(filelist)
i = 1
for item in filelist:
if item.endswith('.jpg') or item.endswith('.JPG'): #图片格式为jpg、JPG
src = os.path.join(os.path.abspath(self.path), item)
dst = os.path.join(os.path.abspath(self.path), str(i).zfill(5) + '.jpg') #设置新的图片名称
try:
os.rename(src, dst)
print ("converting %s to %s ..." % (src, dst))
i = i + 1
except:
continue
print ("total %d to rename & converted %d jpgs" % (total_num, i))
if __name__ == '__main__':
demo = BatchRename()
demo.rename()
只需要修改图片路径、增添图片格式、zfill(5)表示图片名称从00001~99999,可以按照自己的图片数量进行修改。
5. 使用labelImg进行标注。标注是一个非常漫长而又无聊的过程,坚持住!
每个图片都会产生一个xml文件。
6. 检查xml文件。check_annotations.py
import os
def getFilePathList(dirPath, partOfFileName=''):
allFileName_list = list(os.walk(dirPath))[0][2]
fileName_list = [k for k in allFileName_list if partOfFileName in k]
filePath_list = [os.path.join(dirPath, k) for k in fileName_list]
return filePath_list
def check_1(dirPath):
jpgFilePath_list = getFilePathList(dirPath, '.jpg')
allFileMarked = True
for jpgFilePath in jpgFilePath_list:
xmlFilePath = jpgFilePath[:-4] + '.xml'
if not os.path.exists(xmlFilePath):
print('%s this picture is not marked.' %jpgFilePath)
allFileMarked = False
if allFileMarked:
print('congratulation! it is been verified that all jpg file are marked.')
import xml.etree.ElementTree as ET
def check_2(dirPath, className_list):
className_set = set(className_list)
xmlFilePath_list = getFilePathList(dirPath, '.xml')
allFileCorrect = True
for xmlFilePath in xmlFilePath_list:
with open(xmlFilePath, 'rb') as file:
fileContent = file.read()
root = ET.XML(fileContent)
object_list = root.findall('object')
for object_item in object_list:
name = object_item.find('name')
className = name.text
if className not in className_set:
print('%s this xml file has wrong class name "%s" ' %(xmlFilePath, className))
allFileCorrect = False
if allFileCorrect:
print('congratulation! it is been verified that all xml file are correct.')
if __name__ == '__main__':
dirPath = 'Picture/'
className_list = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
check_1(dirPath)
check_2(dirPath, className_list)
此时图片和xml在一个文件夹下。文件夹名称为dirPath。
两个功能:1. 是否有图片漏标。2. 标注的类别是否有拼写错误。在className_list中填写正确的所有类别。
如果存在漏标、类别拼写错误,会打印出图片的名称。
7. 如果出现大数量的类别拼写错误。比如:行人(pedestrian)拼写成 pedestrain。可以使用replace_xml_label.py
# coding=utf-8
import os
import os.path
import xml.dom.minidom
path = 'Annotations'
files = os.listdir(path)
s = []
for xmlFile in files:
portion = os.path.splitext(xmlFile)
if not os.path.isdir(xmlFile):
dom = xml.dom.minidom.parse(os.path.join(path, xmlFile))
root = dom.documentElement
name = root.getElementsByTagName('name')
for i in range(len(name)):
if name[i].firstChild.data == 'pedestrain':
name[i].firstChild.data = 'pedestrian'
with open(os.path.join(path, xmlFile), 'w', encoding='UTF-8') as fh:
dom.writexml(fh)
print('replace filename OK!')
8. 获取每个类的数目,查看数据是否平衡。 getClasses.py
import os
import xml.etree.ElementTree as ET
import numpy as np
np.set_printoptions(suppress=True, threshold=np.nan)
import matplotlib
from PIL import Image
def parse_obj(xml_path, filename):
tree = ET.parse(xml_path + filename)
objects = []
for obj in tree.findall('object'):
obj_struct = {}
obj_struct['name'] = obj.find('name').text
objects.append(obj_struct)
return objects
def read_image(image_path, filename):
im = Image.open(image_path + filename)
W = im.size[0]
H = im.size[1]
area = W * H
im_info = [W, H, area]
return im_info
if __name__ == '__main__':
xml_path = 'Annotations/'
filenamess = os.listdir(xml_path)
filenames = []
for name in filenamess:
name = name.replace('.xml', '')
filenames.append(name)
recs = {}
obs_shape = {}
classnames = []
num_objs = {}
obj_avg = {}
for i, name in enumerate(filenames):
recs[name] = parse_obj(xml_path, name + '.xml')
for name in filenames:
for object in recs[name]:
if object['name'] not in num_objs.keys():
num_objs[object['name']] = 1
else:
num_objs[object['name']] += 1
if object['name'] not in classnames:
classnames.append(object['name'])
for name in classnames:
print('{}:{}个'.format(name, num_objs[name]))
print('信息统计算完毕。')
9. 生成ImageSets\Main文件夹下的4个txt文件:test.txt,train.txt,trainval.txt,val.txt
这四个文件存储的是上一步xml文件的文件名。trainval和test内容相加为所有xml文件,train和val内容相加为trainval。使用CreateTxt.py生成。要将该文件与ImageSets和Annotations放在同一目录下
import os
import random
trainval_percent = 0.8 # trainval数据集占所有数据的比例
train_percent = 0.5 # train数据集占trainval数据的比例
xmlfilepath = 'Annotations'
txtsavepath = 'ImageSets/Main'
total_xml = os.listdir(xmlfilepath)
num = len(total_xml)
print('total number is ', num)
list = range(num)
tv = int(num * trainval_percent)
print('trainVal number is ', tv)
tr = int(tv * train_percent)
print('train number is ', tr)
print('test number is ', num - tv)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)
ftrainval = open('ImageSets/Main/trainval.txt', 'w')
ftest = open('ImageSets/Main/test.txt', 'w')
ftrain = open('ImageSets/Main/train.txt', 'w')
fval = open('ImageSets/Main/val.txt', 'w')
for i in list:
name = total_xml[i][:-4] + '\n'
if i in trainval:
ftrainval.write(name)
if i in train:
ftrain.write(name)
else:
fval.write(name)
else:
ftest.write(name)
ftrainval.close()
ftrain.close()
fval.close()
ftest.close()
10. 将test.txt,train.txt,trainval.txt,val.txt转化为下面这种格式。使用voc_annotation.py
路径 类别名 xmin ymin xmax ymax
例如:
xxx/xxx/a.jpg 0 453 369 473 391 1 588 245 608 268
xxx/xxx/b.jpg 1 466 403 485 422 2 793 300 809 320
import xml.etree.ElementTree as ET
from os import getcwd
sets=[('2018', 'train'), ('2018', 'val'), ('2018', 'test'), ('2018', 'trainval')]
classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
def convert_annotation(year, image_id, list_file):
in_file = open('VOCdevkit\VOC%s\Annotations\%s.xml'%(year, image_id), encoding = 'utf-8')
tree=ET.parse(in_file)
root = tree.getroot()
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult)==1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (int(xmlbox.find('xmin').text), int(xmlbox.find('ymin').text), int(xmlbox.find('xmax').text), int(xmlbox.find('ymax').text))
#list_file.write(" " + ",".join([str(a) for a in b]) + ',' + str(cls_id))
list_file.write(" " + str(cls_id) + ' ' + " ".join([str(a) for a in b]))
wd = getcwd()
for year, image_set in sets:
image_ids = open('VOCdevkit\VOC%s\ImageSets\Main\%s.txt'%(year, image_set)).read().strip().split()
list_file = open('%s_%s.txt'%(year, image_set), 'w')
for image_id in image_ids:
list_file.write('%s\VOCdevkit\VOC%s\JPEGImages\%s.jpg'%(wd, year, image_id))
convert_annotation(year, image_id, list_file)
list_file.write('\n')
list_file.close()
同样地在classes里面填写你自己实际的类别。
如果碰到图片输入是这样:路径 xmin ymin xmax ymax 类别名。将代码中标红的部分调换一下顺序即可
list_file.write(" " + " ".join([str(a) for a in b]) + ' ' + str(cls_id))
总结
后面可能还会有将图片制作成 tfrecord文件用于tensorflow训练,lmdb文件用于caffe训练。脚本会继续增加。