VOC2007数据集格式:
VOC2007详细介绍在这里,提供给大家有兴趣作了解。而制作自己的数据集只需用到前三个文件夹,所以请事先建好这三个文件夹放入同一文件夹内,同时ImageSets
文件夹内包含Main
文件夹
JPEGImages:用于存放训练、测试的图片(图片格式最好为.jpg)
Annatations:用于存放.xml格式的文件,也就是图片对应的标签,每个.xml文件都对应于JPEGImages文件夹的一张图片
ImageSets:内含Main文件夹,在…/ImageSets/Main文件夹下包含test.txt、train.txt、val.txt、trainval.txt四个文件,生成的方式第二步有详细说明
第一步
下载图片,存入JPEGImages文件夹——你可以直接从各种渠道下载得到所需要的图片集,存入到JPEGImages文件夹下,命名格式统一为“00xxxx.jpg”,如下图:
第二步
使用labelImg工具给图片打标签——这是最重要的一步。如果你的python已经pip install lxml
下载了lxml
,
labelImg工具简单的使用步骤就是:
打开单个文件,或者打开一个图片文件夹
给目标物体建立box边框
对box边框内的物体贴上标签
把一张图片内所有目标物都打上各自标签后,再保存生成.xml文件,注意存入Annatations文件夹,文件名也要与当前图片保存一致
然后next下一张图片继续打标签,直到所有图片内物体都打上了标签,最后exit
第三步
生成Main文件夹下的.txt文件——在主目录下运行以下代码既可生成test.txt、train.txt、val.txt、trainval.txt四个文件,请注意每一个path
地址是否正确(其实这四个txt文件在后续并没有什么用处)
1 # -*- coding:utf-8 -*-
5 import os
6 import random
7
8 trainval_percent = 0.7
9 train_percent = 0.8
10 xmlfilepath = 'Annotations'
11 txtsavepath = 'ImageSets/Main'
12 total_xml = os.listdir(xmlfilepath)
13
14 num = len(total_xml)
15 list = range(num)
16 tv = int(num*trainval_percent)
17 tr = int(tv*train_percent)
18 trainval = random.sample(list,tv)
19 train = random.sample(trainval,tr)
20
21 ftrainval = open(txtsavepath+'/trainval.txt', 'w')
22 ftest = open(txtsavepath+'/test.txt', 'w')
23 ftrain = open(txtsavepath+'/train.txt', 'w')
24 fval = open(txtsavepath+'/val.txt', 'w')
25
26 for i in list:
27 name = total_xml[i][:-4]+'\n'
28 if i in trainval:
29 ftrainval.write(name)
30 if i in train:
31 ftrain.write(name)
32 else:
33 fval.write(name)
34 else:
35 ftest.write(name)
36
37 ftrainval.close()
38 ftrain.close()
39 fval.close()
40 ftest .close()
41 print('Well Done!!!')
运行完成,得到如下文件:可以打开看一看,内容就是各个图片的索引,意味着哪些图片用做训练,哪些用做测试。
第四步
用.xml标签,生成.tfrecord文件
说明:SSD框架所用到的标签文件并不直接是.xml格式文件,而是.tfrecord文件
特别注意:要在主目录提前建好tfrecords_
文件夹,不然会报错找不到目标文件夹
1 # -*- coding:utf-8 -*-
5 """
6 特别注意: path地址是否正确、要在主目录下提前创建“tfrecords_”文件夹
7 """
8
9 import os
10 import sys
11 import random
12 import numpy as np
13 import tensorflow as tf
14 import xml.etree.ElementTree as ET # 操作xml文件
15
16 # 我的标签定义只有两类,要根据自己的图片而定
17 VOC_LABELS = {
18 'none': (0, 'Background'),
19 'aiaitie': (1, 'Product')
20 }
21
22 # 图片和标签存放的文件夹.
23 DIRECTORY_ANNOTATIONS = 'Annotations/'
24 DIRECTORY_IMAGES = 'JPEGImages/'
25
26 # 随机种子.
27 RANDOM_SEED = 4242
28 SAMPLES_PER_FILES = 3 # 每个.tfrecords文件包含几个.xml样本
29
30
31 # 生成整数型,浮点型和字符串型的属性
32 def int64_feature(value):
33 if not isinstance(value, list):
34 value = [value]
35 return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
36
37 def float_feature(value):
38 if not isinstance(value, list):
39 value = [value]
40 return tf.train.Feature(float_list=tf.train.FloatList(value=value))
41
42 def bytes_feature(value):
43 if not isinstance(value, list):
44 value = [value]
45 return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))
46
47 # 图片处理
48 def _process_image(directory, name):
49 # Read the image file.
50 filename = directory + DIRECTORY_IMAGES + name + '.jpg'
51 image_data = tf.gfile.FastGFile(filename, 'rb').read()
52
53 # Read the XML annotation file.
54 filename = os.path.join(directory, DIRECTORY_ANNOTATIONS, name + '.xml')
55 tree = ET.parse(filename)
56 root = tree.getroot()
57
58 # Image shape.
59 size = root.find('size')
60 shape = [int(size.find('height').text),
61 int(size.find('width').text),
62 int(size.find('depth').text)]
63 # Find annotations.
64 bboxes = []
65 labels = []
66 labels_text = []
67 difficult = []
68 truncated = []
69 for obj in root.findall('object'):
70 label = obj.find('name').text
71 labels.append(int(VOC_LABELS[label][0]))
72 labels_text.append(label.encode('ascii')) # 变为ascii格式
73
74 if obj.find('difficult'):
75 difficult.append(int(obj.find('difficult').text))
76 else:
77 difficult.append(0)
78 if obj.find('truncated'):
79 truncated.append(int(obj.find('truncated').text))
80 else:
81 truncated.append(0)
82
83 bbox = obj.find('bndbox')
84 a = float(bbox.find('ymin').text) / shape[0]
85 b = float(bbox.find('xmin').text) / shape[1]
86 a1 = float(bbox.find('ymax').text) / shape[0]
87 b1 = float(bbox.find('xmax').text) / shape[1]
88 a_e = a1 - a
89 b_e = b1 - b
90 if abs(a_e) < 1 and abs(b_e) < 1:
91 bboxes.append((a, b, a1, b1))
92
93 return image_data, shape, bboxes, labels, labels_text, difficult, truncated
94
95 # 转化样例
96 def _convert_to_example(image_data, labels, labels_text, bboxes, shape,
97 difficult, truncated):
98 xmin = []
99 ymin = []
100 xmax = []
101 ymax = []
102 for b in bboxes:
103 assert len(b) == 4
104 # pylint: disable=expression-not-assigned
105 [l.append(point) for l, point in zip([ymin, xmin, ymax, xmax], b)]
106 # pylint: enable=expression-not-assigned
107
108 image_format = b'JPEG'
109 example = tf.train.Example(features=tf.train.Features(feature={
110 'image/height': int64_feature(shape[0]),
111 'image/width': int64_feature(shape[1]),
112 'image/channels': int64_feature(shape[2]),
113 'image/shape': int64_feature(shape),
114 'image/object/bbox/xmin': float_feature(xmin),
115 'image/object/bbox/xmax': float_feature(xmax),
116 'image/object/bbox/ymin': float_feature(ymin),
117 'image/object/bbox/ymax': float_feature(ymax),
118 'image/object/bbox/label': int64_feature(labels),
119 'image/object/bbox/label_text': bytes_feature(labels_text),
120 'image/object/bbox/difficult': int64_feature(difficult),
121 'image/object/bbox/truncated': int64_feature(truncated),
122 'image/format': bytes_feature(image_format),
123 'image/encoded': bytes_feature(image_data)}))
124 return example
125
126 # 增加到tfrecord
127 def _add_to_tfrecord(dataset_dir, name, tfrecord_writer):
128 image_data, shape, bboxes, labels, labels_text, difficult, truncated = \
129 _process_image(dataset_dir, name)
130 example = _convert_to_example(image_data, labels, labels_text,
131 bboxes, shape, difficult, truncated)
132 tfrecord_writer.write(example.SerializeToString())
133
134
135 # name为转化文件的前缀
136 def _get_output_filename(output_dir, name, idx):
137 return '%s/%s_%03d.tfrecord' % (output_dir, name, idx)
138
139
140 def run(dataset_dir, output_dir, name='voc_train', shuffling=False):
141 if not tf.gfile.Exists(dataset_dir):
142 tf.gfile.MakeDirs(dataset_dir)
143
144 path = os.path.join(dataset_dir, DIRECTORY_ANNOTATIONS)
145 filenames = sorted(os.listdir(path)) # 排序
146 if shuffling:
147 random.seed(RANDOM_SEED)
148 random.shuffle(filenames)
149
150 i = 0
151 fidx = 0
152 while i < len(filenames):
153 # Open new TFRecord file.
154 tf_filename = _get_output_filename(output_dir, name, fidx)
155 with tf.python_io.TFRecordWriter(tf_filename) as tfrecord_writer:
156 j = 0
157 while i < len(filenames) and j < SAMPLES_PER_FILES:
158 sys.stdout.write(' Converting image %d/%d \n' % (i + 1, len(filenames))) # 终端打印,类似print
159 sys.stdout.flush() # 缓冲
160
161 filename = filenames[i]
162 img_name = filename[:-4]
163 _add_to_tfrecord(dataset_dir, img_name, tfrecord_writer)
164 i += 1
165 j += 1
166 fidx += 1
167
168 print('\nFinished converting the Pascal VOC dataset!')
169
170
171 # 原数据集路径,输出路径以及输出文件名,要根据自己实际做改动
172 dataset_dir = "C:/Users/Admin/Desktop/"
173 output_dir = "./tfrecords_"
174 name = "voc_train"
175
176 def main(_):
177 run(dataset_dir, output_dir, name)
178
179 if __name__ == '__main__':
180 tf.app.run()
得到的.tfrecords文件如下: