分类变量是表示类别或标记的。与数值型变量不同,分类变量的值是不能被排序的,故而又称为无序变量。

one-hot编码

独热编码(one-hot encoding)通常用于处理类别间不具有大小关系的特征。独热编码使用一组比特位表示不同的类别,每个比特位表示一个特征。因此,一个可能有k个类别的分类变脸就可以编码成为一个长度为k的特征向量。若变量不能同时属于多个类别,那这组值就只有一个比特位是‘开’的。

独热编码的优缺点:

  1. 独热编码解决了分类器不好处理属性数据的问题,在一定程度上也起到了扩充特征的作用。它的值只有0和1,不同的类型存储在垂直的空间。
  2. 当类别的数量很多时,特征空间会变得非常大。在这种情况下,一般可以用PCA来减少维度。而且one hot encoding+PCA这种组合在实际中也非常有用。使用稀疏向量节省空间配合特征选择降低维度
import pandas as pd
from sklearn import linear_model
df = pd.DataFrame({'city':['SF','SF','SF','NYC','NYC','NYC','Seattle','Seattle','Seattle'],
                  'Rent':[3999, 4000, 4001, 3499, 3500, 3501, 2499, 2500, 2501]})
df['Rent'].mean()
3333.3333333333335
#将分类变量转换为one-hot编码并拟合一个线性回归模型
one_hot_df = pd.get_dummies(df, prefix=['city'])
one_hot_df



Rent

city_NYC

city_SF

city_Seattle

0

3999

0

1

0

1

4000

0

1

0

2

4001

0

1

0

3

3499

1

0

0

4

3500

1

0

0

5

3501

1

0

0

6

2499

0

0

1

7

2500

0

0

1

8

2501

0

0

1

model = linear_model.LinearRegression()
model.fit(one_hot_df[['city_NYC', 'city_SF', 'city_Seattle']],
         one_hot_df['Rent'])
model.coef_                         #获取线性回归模型的系数
array([ 166.66666667,  666.66666667, -833.33333333])
model.intercept_                      #获取线性回归模型的截距
3333.3333333333335
model.score(one_hot_df[['city_NYC', 'city_SF', 'city_Seattle']],
         one_hot_df['Rent'])          #获取模型的拟合优度R2
0.9999982857172245

使用one-hot编码时,截距表示目标变量rent的整体均值,每个线性系数表示相应城市的Rent均值与整体Rent均值有多大

虚拟编码

虚拟编码在进行表示时只使用k-1个特征,除去了额外的自由度。没有被使用的那个特征通过一个全零向量来表示,它称为参照类。虚拟编码和one-hot都可以通过pandas.get_dummies实现

#用虚拟编码训练一个线性回归模型,指定drop_first标志来生成虚拟编码
dummy_df = pd.get_dummies(df, prefix=['city'], drop_first=True)
dummy_df



Rent

city_SF

city_Seattle

0

3999

1

0

1

4000

1

0

2

4001

1

0

3

3499

0

0

4

3500

0

0

5

3501

0

0

6

2499

0

1

7

2500

0

1

8

2501

0

1

model.fit(dummy_df[['city_SF', 'city_Seattle']], dummy_df['Rent'])
model.coef_
array([  500., -1000.])
model.intercept_
3500.0
model.score(dummy_df[['city_SF', 'city_Seattle']], dummy_df['Rent'])
0.9999982857172245

使用虚拟编码时,偏差系数表示相应变量y对于参照类的均值,该例中参照类是city_NYC。第i个特征的系数等于第i个类别的均值与参照类均值的差。

效果编码

效果编码与虚拟编码非常相似,区别在于参照类的用全部由-1组成的向量表示的

effect_df = dummy_df.copy()
effect_df.loc[3:5, ['city_SF','city_Seattle']]= -1.0
effect_df



Rent

city_SF

city_Seattle

0

3999

1.0

0.0

1

4000

1.0

0.0

2

4001

1.0

0.0

3

3499

-1.0

-1.0

4

3500

-1.0

-1.0

5

3501

-1.0

-1.0

6

2499

0.0

1.0

7

2500

0.0

1.0

8

2501

0.0

1.0

model.fit(effect_df[['city_SF', 'city_Seattle']], effect_df['Rent'])
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
model.coef_
array([ 666.66666667, -833.33333333])
model.intercept_
3333.3333333333335
model.score(effect_df[['city_SF', 'city_Seattle']], effect_df['Rent'])
0.9999982857172245

处理大型分类变量

特征散列化

散列函数是一种确定性函数,它可以将一个可能无界的整数映射到一个有限的整数范围【1,m】中。

import pandas as pd
import json
js = []
with open('yelp_academic_dataset_review.json') as f:
    for i in range(10000):
        js.append(json.loads(f.readline()))
f.close()

review_df = pd.DataFrame(js)

# 定义m为唯一的business_id的数量
m = len(review_df.business_id.unique())
m
4174
from sklearn.feature_extraction import FeatureHasher
h = FeatureHasher(n_features = m , input_type='string')
f = h.transform(review_df['business_id'])
review_df['business_id'].unique().tolist()[0:5]
['9yKzy9PApeiPPOUJEtnvkg',
 'ZRJwVLyzEJq1VAihDhYiow',
 '6oRAC4uyJCsJl1X0WZpVSA',
 '_1QQZuf4zZOyFCvXc0o6Vg',
 '6ozycU1RpktNG2-1BroVtw']
f.toarray()
array([[0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       ...,
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.]])
from sys import getsizeof
print('Our pandas Series, in bytes: ', getsizeof(review_df['business_id']))
print('Our hashed numpy array, in bytes: ', getsizeof(f))
Our pandas Series, in bytes:  790152
Our hashed numpy array, in bytes:  56

分箱计数

import pandas as pd
df = pd.read_csv('train_subset.csv')
len(df['device_id'].unique()) #查看训练集中有多少个唯一的特征
1075
df.head()



id

click

hour

C1

banner_pos

site_id

site_domain

site_category

app_id

app_domain

...

device_type

device_conn_type

C14

C15

C16

C17

C18

C19

C20

C21

0

1000009418151094273

0

14102100

1005

0

1fbe01fe

f3845767

28905ebd

ecad2386

7801e8d9

...

1

2

15706

320

50

1722

0

35

-1

79

1

10000169349117863715

0

14102100

1005

0

1fbe01fe

f3845767

28905ebd

ecad2386

7801e8d9

...

1

0

15704

320

50

1722

0

35

100084

79

2

10000371904215119486

0

14102100

1005

0

1fbe01fe

f3845767

28905ebd

ecad2386

7801e8d9

...

1

0

15704

320

50

1722

0

35

100084

79

3

10000640724480838376

0

14102100

1005

0

1fbe01fe

f3845767

28905ebd

ecad2386

7801e8d9

...

1

0

15706

320

50

1722

0

35

100084

79

4

10000679056417042096

0

14102100

1005

1

fe8cc448

9166c161

0569f928

ecad2386

7801e8d9

...

1

0

18993

320

50

2161

0

35

-1

157

5 rows × 24 columns

def click_counting(x, bin_column):
    clicks = pd.Series(
        x[x['click'] > 0][bin_column].value_counts(), name='clicks')
    no_clicks = pd.Series(
        x[x['click'] < 1][bin_column].value_counts(), name='no_clicks')

    counts = pd.DataFrame([clicks, no_clicks]).T.fillna('0')
    counts['total'] = counts['clicks'].astype(
        'int64') + counts['no_clicks'].astype('int64')

    return counts
def bin_counting(counts):
    counts['N+'] = counts['clicks'].astype('int64').divide(
        counts['total'].astype('int64'))
    counts['N-'] = counts['no_clicks'].astype('int64').divide(
        counts['total'].astype('int64'))
    counts['log_N+'] = counts['N+'].divide(counts['N-'])

    #    If we wanted to only return bin-counting properties, we would filter here
    bin_counts = counts.filter(items=['N+', 'N-', 'log_N+'])
    return counts, bin_counts
bin_column = 'device_id'
device_clicks = click_counting(df.filter(items = [bin_column, 'click']), bin_column)
device_all, device_bin_counts = bin_counting(device_clicks)
len(device_bin_counts)
1075
device_all.sort_values(by = 'total', ascending = False).head(4)



clicks

no_clicks

total

N+

N-

log_N+

a99f214a

1561

7163

8724

0.178932

0.821068

0.217925

c357dbff

2

15

17

0.117647

0.882353

0.133333

a167aa83

0

9

9

0.000000

1.000000

0.000000

3c0208dc

0

9

9

0.000000

1.000000

0.000000

from sys import getsizeof
print('Our pandas Series, in bytes: ', getsizeof(df.filter(items=['device_id', 'click'])))
print('Our bin-counting feature, in bytes: ', getsizeof(device_bin_counts))
Our pandas Series, in bytes:  730152
Our bin-counting feature, in bytes:  95699

参考:
爱丽丝·郑、阿曼达·卡萨丽,精通特征工程