工欲善其事必先利其器,再次补充下GPU和Cuda之间的逻辑对应关系:

每个SM中有大量的寄存器资源,可以养活成千上万的线程。SM中另外一个重要资源是Shared Memory,没错,它正是软件抽象中Shared Memory的对应物。到这里,SM在软件抽象里的对应也呼之欲出了,没错,正是Block。我们不妨先摆出这个对应:

Block <-> SM
Thread执行 <-> CUDA Cores
Thread数据 <-> Register/Local Memory

同一Grid下的不同Block会被分发到不同的SM上执行。SM上可能同时存在多个Block被执行,它们不一定来自同一个kernel函数。每个Thread中的局域变量被映射到SM的寄存器上,而Thread的执行则由CUDA cores来完成。

SM上可以同时存在多少个Block?这由硬件资源的消耗决定:每个SM会占用一定数量的寄存器和Shared Memory,因此SM上同时存活的Block数目不应当超过这些硬件资源的限制。由于SM上可以同时有来自不同kernel的Block存在,因此有时候即便SM上剩余资源不足以再容纳一个kernel A的Block,但却仍可能容纳下一个kernel B的Block.

我们可以看到,SM上的CUDA核心是有限的,它们代表了能够在物理上真正并行的线程数——软件抽象里,Block中所有的线程是并行执行的,这只是个逻辑上无懈可击的抽象,事实上我们不可能对一个任意大小的Block都给出一个同等大小的CUDA核心阵列,来真正并行的执行它们。

因而有了Warp这个概念:物理上,Block被划分成一块块分别映射到CUDA核心阵列上执行,每一块就叫做一个Warp.目前,CUDA中的Warp都是从threadIdx = 0开始,以threadIdx连续的32个线程为一组划分得到,即便最后剩下的线程不足32个,也将其作为一个Warp.CUDA kernel的配置中,我们经常把Block的size设置为32的整数倍,正是为了让它能够精确划分为整数个Warp(更深刻的原因和存储器访问性能有关,但这种情况下仍然和Warp的size脱不了干系)。

现在可以整理一下这个世界的图景了。SM上存活着几个Block,每个Block中的变量占据着自己的寄存器和Shared Memory,Block被划分成32个线程组成的Warp. 这样,大量的Warp生存在SM上(但只有一个warp执行,其他的挂起/等待),等待被调度到CUDA核心阵列去执行。

Warp Scheduler正如其名,是这个Warp世界里的调度者。当一个Warp执行中出现等待(存储器读写延迟等)后,Warp Scheduler就迅速切换到下一个可执行的Warp,对其发送指令直到这个Warp又一次出现等待,周而复始。

抽象化模型:

gpu和CPU有内存吗_gpu和CPU有内存吗

上图关于SM和Block的关系解释一下:每个SM在逻辑上可以包含一个Block或多个Block,但每个Block一定属于唯一一个SM.