作者 | 周志鹏
责编 | 郭 芮
最近,不止一次收到小伙伴的截图追问:
“这个图叫什么???”
“这个图真好看!!!怎么画啊?”
......
笔者本没有干货,问的人多了,也便有了干货。
此图姓桑名基,平素不喜露面。奈何天生丽质,偶有露面,必引众人围观。
时人有云:“桑基桑基,高贵美丽!”
桑基是何许图也?
据笔者不严谨的抽样提问统计,90%想学习桑基图的旁友,都是被她妖艳炫酷的外表所吸引。
而桑基图真正代表了什么?和类似图表相比的独特性是什么?却几乎无人问津。
害!人真的是视觉动物!
言归正传,我们来看看百科的官方解释:
桑基图(Sankey diagram),即桑基能量分流图,也叫桑基能量平衡图。它是一种特定类型的流程图,图中延伸的分支的宽度对应数据流量的大小,通常应用于能源、材料成分、金融等数据的可视化分析。因1898年Matthew Henry Phineas Riall Sankey绘制的"蒸汽机的能源效率图"而闻名,此后便以其名字命名为"桑基图"。
Emmm,有点内个意思了,结合其他资料,做进一步的汇总提炼:
- 桑基两个字取自“发明”者的名字
- 属于流程图的一种,核心在于展示数据的流转
- 主要由节点、边和流量三要素构成,边越宽代表流量越大
- 遵循守恒定律,无论怎么流动,开端和末端数据总是一致的
文字太苍白,下面我们用Python来绘制一个具体的实例。
Python手把手绘制桑基图
动手之前,我们再次敲黑板,回顾桑基图组成要素的重点——节点、边和流量。
任何桑基图,无论展现形式如何夸张,色彩如何艳丽,动效如何炫酷,本质都逃不出上述3点。
只要我们定义好上述3个要素,Python的pyecharts库能够轻松实现桑基图的绘制。
这里我们用“当代青年熬夜原因分析”数据为例:
(数据来源:这个数据是笔者近两周卖炒粉时口头做的调研)
很规整的性别、熬夜原因、人数三列数据。
不过,要用pyecharts来画图,得入乡随俗,按照它定的规则来规整数据源。
首先是节点,这一步需要把所有涉及到的节点去重规整在一起。也就是要把性别一列的“男”、“女”和熬夜原因一列的“打游戏”、“加班”、“看剧”以列表内嵌套字典的形式去重汇总:
接着,定义边和流量,数据从哪里流向哪里,流量(值)是多少,循环+字典依然可以轻松搞定:
source-target-value的字典格式,很清晰的描述了数据的流转情况。
这两块数据准备完毕,桑基图已经完成了80%,剩下的20%,只是固定格式的绘图代码:
from pyecharts.charts import Sankey
from pyecharts import options as opts
pic = (
Sankey
.add('', #图例名称
nodes, #传入节点数据
linkes, #传入边和流量数据
#设置透明度、弯曲度、颜色
linestyle_opt=opts.LineStyleOpts(opacity = 0.3, curve = 0.5, color = "source"),
#标签显示位置
label_opts=opts.LabelOpts(position="right"),
#节点之前的距离
node_gap = 30,
)
.set_global_opts(title_opts=opts.TitleOpts(title = '熬夜原因桑基图'))
)
pic.render('test.html')
一个回车下去,看看成果:
果然,男打游戏女看剧,加班熬夜是儿戏。
如果想要垂直显示,只需要在add函数里面加一个orient="vertical"就好:
pic = (
Sankey
.add('',
nodes,
linkes,
linestyle_opt=opts.LineStyleOpts(opacity = 0.3, curve = 0.5, color = "source"),
label_opts=opts.LabelOpts(position="top"),
node_gap = 30,
orient="vertical