目录
- 学习目的
- 软件版本
- 原始文档
- 配对样本的秩和检验
- 一、实战案例
- 二、统计策略
- 三、SPSS操作
- 1、正态性检验
- 2、两相关样本Wilcoxon检验
- 四、结果解读
- 五、规范报告
- 2、规范文字
- 六、拓展阅读
- 七、划重点
学习目的
SPSS第十三讲|配对样本的秩和检验如何做?很简单!
软件版本
IBM SPSS Statistics 26。
原始文档
《小白爱上SPSS》课程#统计原理
配对样本的秩和检验
配对样本的秩和检验是指在总体分布未知的情况下,推断两个相关样本所在总体分布是否有差异,常用Wilcoxon检验(符号秩检验),也称为配对设计的符号秩和检验。
配对样本的秩和检验是Wilcoxon提出的,该方法用于推断总体中位数是否等于某个特定值(详见第十一讲:单样本秩和检验),还可以用于本讲内容,即推断配对样本差值的总体中位数是否为0。
一、实战案例
大侠们最近在抱怨学院食堂饭菜不好,小白决定整顿食堂。他随机抽取了20名大侠,让他们在整顿前和整顿后分别对食堂满意度做个评价(满分100分)。
问:整顿学院食堂是否提升了满意度?
读数据:
GET
FILE='E:\E盘备份\recent\小白爱上SPSS\小白数据\第十三讲:两相关样本的Wilcoxon符号秩检验.sav'.
最后1列的差值也可以用语法命令生成,如:
COMPUTE 差值2=后测-前测. /*计算差值(后测-前测),如果生成差值列的名称已存在,会覆盖原有列*/
EXECUTE /*执行*/.
二、统计策略
统计分析策略口诀“目的引导设计,变量确定方法”。
针对上述案例,扪心六问。
Q1:本案例研究目的是什么?
A:比较差异。比较食堂整顿前后是否有差异。
Q2:比较的组数是多少呢?
A:两组数据,且这两组数据前后匹配。
Q3:本案例属于什么研究设计?
A:实验性研究。配对设计的实验性研究。
Q4:有几个变量?
A:有两个变量。
自变量为测量次序,结局变量为满意度
Q5:变量类型是什么?
A:一个分组(分类)变量,分为整顿前和整顿后;另一个为连续变量,满意度。
Q6:数据服从正态分布么?
A:需要对前后满意度的差值进行正态检验。若服从,采用配对样本T检验;若不服从正态检验,采用两相关样本的秩和检验。
概括而言,如果数据满足以下条件,则采用配对样本的秩和检验。
三、SPSS操作
1、正态性检验
配对设计的数据主要检验两组差值是否服从正态性检验。
正态性检验语法:
EXAMINE VARIABLES=差值
/PLOT HISTOGRAM NPPLOT /*若无此行,则不输出正态性检验表*/
/COMPARE GROUPS
/STATISTICS DESCRIPTIVES
/CINTERVAL 95
/MISSING LISTWISE
/NOTOTAL.
正态性检验结果:
本案例样本量≦50,以夏皮洛-威皮克(S-W)检验为准,p=0.035,同时结合直方图,差值数据不符合正态分布。故可采用两相关样本Wilcoxon检验。
2、两相关样本Wilcoxon检验
Step1: 打开SPSS,依次点击:分析-非参数检验-旧对话框-两个相关样本;
Step2:在双关联样本检验窗口中,同时点击“前测满意度”和“后测满意度”变量进入检验对框中,系统默认为“威尔科克森”检验。
Step3:点击“选项”,进入对话框,选择“描述”和“四分位数”,点击“继续”。
Step4: 点击“确定”输出结果。
命令行:
NPAR TESTS
/WILCOXON=前测 WITH 后测 (PAIRED)
/STATISTICS DESCRIPTIVES QUARTILES
/MISSING ANALYSIS.
四、结果解读
配对设计的符号秩和检验结果有三张表格。
第一,表1描述性统计结果。
分别为样本量、均数、标准差、最小值、最大值、第25,50,75百分位数。
第二,表2给出两组数据的负秩、正秩、结点各自出现的频数、平均秩和以及秩和。
第三,表3为配对样本的秩和检验符号秩和检验的结果,本例Z=-3.138,p=0.002,配对差值中位数与0值相比,差异具有统计学意义.
五、规范报告
规范报告有多种方式,本公众号只提供一种方式供参考。
1、规范表格
表 在食堂整改前后,大侠们满意度比较
注:数据不服从正态时,不能用平均数和标准差来描述;而应采用中位数和四分位距(第25百分位数和第75百分位数之距离)来描述,详见第二讲|描述性统计,你学会了吗?
2、规范文字
由于数据不服从正态分布,故采用配对样本的Wilcoxon符号检验。结果显示,Z=-3.138,p<0.05,后测满意度显著高于前测满意度,表明经过整改过后,大侠们对食堂的满意度显著提高。
六、拓展阅读
本文的数据类型,除了可以使用Wilcoxon符号秩检验外,也可以使用符号检验(Sign test)。但是符号检验对于此类数据检验的效能低于Wilcoxon符号秩检验。因此,两组配对的,非正态分布的连续性变量,或者有序分类变量,建议使用Wilcoxon 符号秩检验。
符号检验(Sign test)一般使用场景:不知道两个配对数据(如前测、后测)的具体数值,只知道每个研究对象的两个配对数据的相对大小(如前测>后测,或者前测<后测,或者前测=后测)。
七、划重点
1、配对样本的秩和检验用于两组匹配连续型变量(不服从正态分布)或次序变量。
2、两配对数据的差值符合正态分布使用配对t检验;两配对数据的差值不符合正态分布,则使用配对样本的秩和检验。
3、秩和检验的描述性统计应采用中位数和四分位距(25%和75%位数),而不是平均数和标准差。
小白学完此讲后,统计分析方法选择思路更加清晰了,按照之前思路,若需要比较三组连续型差异,如果不服从正态分布,那也应该有多独立样本秩和检验吧!
是的,小白思路没错,下一讲:多独立样本秩和检验。