1、Yarn资源调度器

Yarn是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作系统平台,而MapReduce等运算程序则相当于运行在于操作系统之上的应用程序。

1.1 Yarn基础架构

Yarn主要由ResourceManager、NodeManager、ApplicationMaster和Container等组件构成。

resourcemanager 内存配置_hadoop


1、ResourceManager(RM)主要作用:

(1)处理客户端请求

(2)监控NodeManager

(3)启动或监控ApplicationMaster

(4)资源的分配和调度

2、NodeManager(NM)主要作用:
(1)管理单个节点上的资源
(2)处理来自ResourceManager的命令
(3)处理来自ApplicationMaster的命令

3、ApplicationMaster(AM)的主要作用·:
(1)为应用程序申请资源并分配给内部的任务
(2)任务的监控与容错

4、Container
Container是Yarn中的资源抽象,它封装了某个节点上的多维度资源,如内存、CPU、磁盘、网络等。

1.2 Yarn工作机制

resourcemanager 内存配置_Text_02


(1)MR程序提交到客户端所在的节点

(2)YarnRunner向ResourceManager申请一个Application

(3)RM将该应用程序的资源路径返回给YarnRunner。

(4)该程序将运行所需资源提交到HDFS上

(5)程序资源提交完毕后,申请运行mrAppMaster

(6)RM将用户的请求初始化成一个Task

(7)其中一个NodeManager领取到Task任务

(8)该NodeManager创建容器,并尝试MRAppmaster

(9)Container从HDFS上拷贝资源到本地

(10)MRAppMaster向RM申请运行MapTask资源

(11)RM将运行MapTask任务分配给另外两个NodeManager,另外两个NodeManager分别领取任务并创建容器。

(12)MR向两个接受到任务的NodeManager发生程序启动脚本,这两个NodeManager分别启动MapTask,MapTask对数据分区排序。

(13)MRAppMaster等待所以MapTask运行完毕后,向RM申请容器,运行Reduce Task。

(14)ReduceTask向MapTask获取相应分区的数据

(15)程序运行完毕后,MR会向RM申请注销自己。

1.3 作业提交全过程

resourcemanager 内存配置_大数据_03


1、作业提交过程之YARN

resourcemanager 内存配置_apache_04


2、作业提交之HDFS&&MapReduce

resourcemanager 内存配置_apache_05


作业提交全过程详解

(1)作业提交

(a)client调用job.waitForCompletion()方法,向整个集群提交MapReduce作业。

(b)client向RM申请一个作业id

(c)RM给Client返回该job资源的提交路径和作业id

(d)client提交jar包、切片信息和配置文件到指定的资源提交路径

(e)client提交完资源后,向RM申请运行MRAppMaster

(2)作业初始化
(a)当RM收到client的请求后,将该job添加到容量调度器中
(b)某一个空间的NM领到该Job
(c)该NM创建Container,并产生MRAppMaster
(d)下载Client提交的资源到本地

(3)任务分配
(a)MRAppMaster向RM申请运行多个MapTask任务资源
(b)RM将运行MapTask任务分配给另外两个NodeManager,这两个NodeManager分别领取任务并创建容器。

(4)任务运行
(a)MR向两个接受到任务的NodeManager发送程序启动脚本,这两个NodeManager分别启动MapTask,MapTask对数据分区排序。
(b)MRAppMaster等待所有MapTask运行完毕后,向RM申请容器,运行ReduceTask。
(c)ReduceTask向MapTask获取相应分区的数据
(d)程序运行完毕后·,MR会向RM申请注销自己。

(5)进度和状态更新
Yarn中的任务将其进度和状态(包括counter)返回给应用管理器,客户端每秒(通过mapreduce.client.progressmonitor.pollinterval 设置)向应用管理器请求进度更新,展示给用户。

(6)作业完成
除了向应用管理器请求作用进度外,客户端每5秒都会通过调用waitForCompletion()方法来检查作业是否完成。时间间隔可以通过 mapreduce.client.completion.pollinterval 来设置。作业完成之后,应用管理器和Container会清理工作状态。作业的信息会被作业历史服务器储存以备之后用户核查。

1.4 Yarn调度器和调度算法

目前,Hadoop作业调度器主要有三种:FIFO、容量(Capacity Scheduler)和公平(Fair Scheduler)。Apache Hadoop3.1.3默认的资源调度器是Capacity Scheduler。
CDH框架默认调度器是Fair Scheduler。
具体详见:yarn-default.xml文件

<property>
 <description>The class to use as the resource scheduler.</description>
 <name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value>
</property>
1.4.1 先进先出调度器(FIFO)

FIFO调度器(First In First Out):单队列,根据提交·作业的先后顺序,先来先服务。

resourcemanager 内存配置_apache_06


优点:简单易懂

缺点:不支持多队列,生产环境很少使用

1.4.2 容量调度器(Capacity Scheduler)

Yahoo开发的多用户调度器

resourcemanager 内存配置_apache_07


1、多队列:每个队列可配置一定的资源量,每个队列采用FIFO调度策略

2、容量保证:管理员可为每个队列设置资源最低保证和资源使用上限

3、灵活性:如果一个队列中的资源有剩余,可以暂时共享给那些需要资源的队列,而一旦该队列有新的应用程序,则其他队列借调的资源会归还给该队列。

4、多租户:

(1)支持多用户共享集群和多应用程序同时运行

(2)为了防止同一个用户的作业独占队列中的资源,该调度器会对象同一用户提交的作业所占资源量进行限定。

resourcemanager 内存配置_Text_08


容量调度器资源分配算法:

(1)队列资源分配

从root开始,使用深度优先算法,优先选择资源占用率最低的队列分配资源。

(2)作业资源分配

默认按照提交作业的优先级和提交时间顺序分配资源

(3)容器资源分配

按容器的优先级分配资源:

如果优先级相同,按照数据本地性原则:

(a)任务和数据在同一个节点

(b)任务和数据在同一个机架

(c)任务和数据不同节点和不同机架

1.4.3 公平调度器(Fair Scheduler)

是Facebook开发的多用户调度器

resourcemanager 内存配置_apache_09


1、与容量调度器相同点

(1)多队列:支持多队列多作业

(2)容量保证:管理员可为每个队列设置资源最低保证和资源使用上限

(3)灵活性:如果一个队列的资源有剩余,可以暂时共享给那些需要资源的队列,而一旦该队列有新的应用程序提交,则其他队列借调的资源会归还给该队列

(4)多租户:支持多用户共享集群和多应用程序同时运行;为了防止同一个用户的作业独占队列中的资源,该调度器会对同一个用户提交的作业所占资源量进行限定。2、与容量调度器不同点

(1)核心调度策略不同

(a)容量调度器:优先选择资源利用率低的队列

(b)公平调度器:优先选择对资源缺额比例大的资源

(2)每个队列可以单独设置资源分配方式

(a)容量调度器:FIFO、DRF

(b)公平调度器:FIFO、FAIR、DRF

resourcemanager 内存配置_Text_10


3、公平调度器队列资源分配方式

(1)FIFO策略

公平调度器每个队列资源分配策略如果选择FIFO的话,此时公平调度器相当于上面讲过的容量调度器。

(2)Fair策略

Fair策略(默认)是一种基于最大最小公平算法实现的资源多路复用方式。默认情况下,每个队列内部采用该方式分配资源。这意味着,如果一个队列中有两个应用程序在同时运行,则每个应用程序可以得到1/2的资源;如果三个应用程序同时运行,则每个应用程序可以得到1/3的资源。具体资源分配流程和容量调度器一致:

(1)选择队列

(2)选择作业

(3)选择容器

以上三步,每一步都是按照公平策略分配资源

实际最小资源份额:mindshare = Min(资源需求量,配置的最小资源)

是否饥饿:isNeedy = 资源使用量 < mindshare(实际最小资源份额)

资源分配比:minShareRatio = 资源使用量 / Max(mindshare, 1)

资源使用权重比:useToWeightRatio = 资源使用量 / 权重

resourcemanager 内存配置_apache_11


(3)公平调度器资源分配算法

resourcemanager 内存配置_Text_12


(4)公平调度算法队列资源分配方式

resourcemanager 内存配置_hadoop_13


(5)DRF策略

DRF(Dominant Resource Fairness),我们之前说的资源,都是单一标准,例如只考虑内存(也是Yarn默认的情况)。但是很多时候我们资源有很多种,例如内存,CPU,网络带宽等,这样我们很难衡量两个应用应该分配的资源比例。

那么在YARN中,我们用DRF来决定如何调度:
假设集群一共有100 CPU和10T 内存,而应用A需要(2 CPU, 300GB),应用B需要(6 CPU,100GB)。则两个应用分别需要A(2%CPU, 3%内存)和B(6%CPU, 1%内存)的资源,这就意味着A是内存主导的, B是CPU主导的,针对这种情况,我们可以选择DRF策略对不同应用进行不同资源(CPU和内存)的一个不同比例的限制。

1.5 Yarn常用命令

Yarn状态的查询,除了可以在ResourceManager节点ip+端口号8088在页面查看外,还可以通过命令操作。常见的命令操作如下:

1.5.1 yarn Application查看任务

(1)列出所有Application:

yarn application -list

resourcemanager 内存配置_Text_14


(2)根据Application状态过滤 (所有状态:ALL、NEW、

NEW_SAVING、SUBMITTED、ACCEPTED、RUNNING、FINISHED、FAILED、KILLED)

yarn application -list -appStates

(3)kill 掉Application

yarn application -kill application_1612577921195_0001
1.5.2 yarn logs查看日志

(1)查询 Application 日志:yarn logs -applicationId
(2)查询 Container 日志:yarn logs -applicationId -containerId

1.5.3 yarn applicationattempt 查看尝试运行的任务

(1)列出所有 Application 尝试的列表:yarn applicationattempt -list
(2)打印 ApplicationAttemp 状态:yarn applicationattempt -status

1.5.4 yarn Container查看容器

(1)列出所有 Container:yarn container -list
(2)打印 Container 状态:yarn container -status

注意:只有在任务跑的途中才能看到 container 的状态

1.5.5 yarn node 查看节点状态

列出所有节点:yarn node -list -all

1.5.6 yarn rmadmin 更新配置

加载队列配置:yarn rmadmin -refreshQueues

1.5.6 yarn queue 查看队列

打印队列信息:yarn queue -status

1.6 Yarn生产环境核心参数

1、ResourceManager相关

核心参数

说明

yarn.resourcemanager.scheduler.class

配置调度器,默认容量

yarn.resourcemanager.scheduler.client.thread-count

ResourceManager处理调度器请求的线程数量,默认50

2、NodeManager相关

核心参数

说明

yarn.nodemanager.resource.detect-hardware-capabilities

是否让yarn自己检测硬件进行配置,默认false

yarn.nodemanager.resource.count-logical-processors-as-cores

是否将虚拟核数当作CPU核数,默认false

yarn.nodemanager.resource.pcores-vcores-multiplier

虚拟核数和物理核数乘数,例如:4核8线程,该参数就应设为2,默认1.0

yarn.nodemanager.resource.memory-mb

NodeManager使用内存,默认8G

yarn.nodemanager.resource.system-reserved-memory-mb NodeManager

为系统保留多少内存以上二个参数配置一个即可

yarn.nodemanager.resource.cpu-vcores

NodeManager使用CPU核数,默认8个

yarn.nodemanager.pmem-check-enabled

是否开启物理内存检查限制container,默认打开

yarn.nodemanager.vmem-check-enabled

是否开启虚拟内存检查限制container,默认打开

yarn.nodemanager.vmem-pmem-ratio

虚拟内存物理内存比例,默认2.1

3、Container相关

核心参数

说明

yarn.scheduler.minimum-allocation-mb

容器最最小内存,默认1G

yarn.scheduler.maximum-allocation-mb

容器最最大内存,默认8G

yarn.scheduler.minimum-allocation-vcores

容器最小CPU核数,默认1个

yarn.scheduler.maximum-allocation-vcores

容器最大CPU核数,默认4个

2、案例实操

2.1 Yarn的Tool接口案例

(1)需求:自己写的程序可以动态传参。编写Yarn的Tool接口。
(2)编码
(a)WordCount类

package org.example._14yarntool;


import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;


import java.io.IOException;

/**
 * @ClassName WordCount
 * @Description TODO
 * @Author Zouhuiming
 * @Date 2023/5/24 17:34
 * @Version 1.0
 */
public class WordCount implements Tool {

    private Configuration conf;
    @Override
    public int run(String[] args) throws Exception {
        Job job= Job.getInstance(conf);

        job.setJarByClass(WordCountDriver.class);


        job.setMapperClass(WordCountMapper.class);
        job.setReducerClass(WordCountReducer.class);

        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);


        FileInputFormat.setInputPaths(job,new Path(args[0]));
        FileOutputFormat.setOutputPath(job,new Path(args[1]));

        return job.waitForCompletion(true) ? 0 : 1;
    }

    @Override
    public void setConf(Configuration configuration) {
        this.conf=configuration;
    }

    @Override
    public Configuration getConf() {
        return conf;
    }

    public static class WordCountMapper extends Mapper<LongWritable, Text,Text, IntWritable>{

        private Text outK=new Text();
        private IntWritable outV=new IntWritable(1);

        @Override
        protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException {
            String line=value.toString();
            String[] words = line.split(" ");

            for (String word : words) {
                outK.set(word);
                context.write(outK,outV);
            }
        }
    }

    public static class WordCountReducer extends Reducer<Text,IntWritable,Text,IntWritable>{
        private IntWritable outV=new IntWritable();

        @Override
        protected void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {
            int sum=0;

            for (IntWritable value : values) {
                sum+=value.get();
            }

            outV.set(sum);
            context.write(key,outV);
        }
    }

}

(b)Driver类

package org.example._14yarntool;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

import java.util.Arrays;

/**
 * @ClassName WordCountDriver
 * @Description TODO
 * @Author Zouhuiming
 * @Date 2023/5/24 17:42
 * @Version 1.0
 */
public class WordCountDriver {
    private static Tool tool;

    public static void main(String[] args) throws Exception {
        //1、创建配置文件
        Configuration conf=new Configuration();

        //2、判断是否有tool接口
        switch (args[0]){
            case "wordcount":
                tool=new WordCount();
                break;
            default:
                throw new RuntimeException("No such tool:"+args[0]);
        }

        //3、用Tool执行程序
        //Arrays.copyOfRange()将老数组的元素放到新数组里面
        int run=ToolRunner.run(conf,tool,Arrays.copyOfRange(args,1,args.length));

        System.exit(run);
    }
}