知识点1:UV坐标
给模型贴纹理时,我们需要通过UV坐标来告诉OpenGL用哪块图像填充三角形。
每个顶点除了位置坐标外还有两个浮点数坐标:U和V。这两个坐标用于访问纹理,UV坐标是指所有的图象文件都是二维的一个平面。水平方向是U,垂直方向是V,通过这个平面的,二维的UV坐标系。我们可以定位图象上的任意一个象素。如下图所示:
UV坐标和顶点、颜色一样也是一种属性,方法相同:定义、创建、绑定、填充、配置
UV坐标预设:这里需要注意一点,反转UV坐标,DXT压缩源自DirectX,和OpenGL相比,DirectX中的V纹理坐标是反过来的。所以使用压缩纹理时,得用(coord.v, 1.0-coord.v)来获取正确的纹理。可以在导出脚本、加载器、着色器等环节中执行这步操作
static GLfloat g_uv_buffer_data[] = {
0.000059f, 1.0f-0.000004f,
0.000103f, 1.0f-0.336048f,
0.335973f, 1.0f-0.335903f,
1.000023f, 1.0f-0.000013f,
0.667979f, 1.0f-0.335851f,
0.999958f, 1.0f-0.336064f,
0.667979f, 1.0f-0.335851f,
0.336024f, 1.0f-0.671877f,
0.667969f, 1.0f-0.671889f,
1.000023f, 1.0f-0.000013f,
0.668104f, 1.0f-0.000013f,
0.667979f, 1.0f-0.335851f,
0.000059f, 1.0f-0.000004f,
0.335973f, 1.0f-0.335903f,
0.336098f, 1.0f-0.000071f,
0.667979f, 1.0f-0.335851f,
0.335973f, 1.0f-0.335903f,
0.336024f, 1.0f-0.671877f,
1.000004f, 1.0f-0.671847f,
0.999958f, 1.0f-0.336064f,
0.667979f, 1.0f-0.335851f,
0.668104f, 1.0f-0.000013f,
0.335973f, 1.0f-0.335903f,
0.667979f, 1.0f-0.335851f,
0.335973f, 1.0f-0.335903f,
0.668104f, 1.0f-0.000013f,
0.336098f, 1.0f-0.000071f,
0.000103f, 1.0f-0.336048f,
0.000004f, 1.0f-0.671870f,
0.336024f, 1.0f-0.671877f,
0.000103f, 1.0f-0.336048f,
0.336024f, 1.0f-0.671877f,
0.335973f, 1.0f-0.335903f,
0.667969f, 1.0f-0.671889f,
1.000004f, 1.0f-0.671847f,
0.667979f, 1.0f-0.335851f
};
//纹理坐标的改动
for (int i = 0; i < 36; ++i)
{
g_uv_buffer_data[i*2+1] = 1 - g_uv_buffer_data[i*2+1];
}
UV缓冲区:
GLuint uvbuffer;
glGenBuffers(1, &uvbuffer);
glBindBuffer(GL_ARRAY_BUFFER, uvbuffer);
glBufferData(GL_ARRAY_BUFFER, sizeof(g_uv_buffer_data), g_uv_buffer_data, GL_STATIC_DRAW);
主循环中的配置:
glEnableVertexAttribArray(1);
glBindBuffer(GL_ARRAY_BUFFER, uvbuffer);
glVertexAttribPointer(
1, // attribute. No particular reason for 1, but must match the layout in the shader.
2, // size : U+V => 2
GL_FLOAT, // type
GL_FALSE, // normalized?
0, // stride
(void*)0 // array buffer offset
);
知识点2:纹理加载函数
这里需要对bmp等图片的格式进行了解,或是DDS格式的贴图,这里不再赘述
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <GL/glew.h>
#include <glfw3.h>
GLuint loadBMP_custom(const char * imagepath){
printf("Reading image %s\n", imagepath);
// Data read from the header of the BMP file
unsigned char header[54];
unsigned int dataPos;
unsigned int imageSize;
unsigned int width, height;
// Actual RGB data
unsigned char * data;
// Open the file
FILE * file = fopen(imagepath,"rb");
if (!file) {printf("%s could not be opened. Are you in the right directory ? Don't forget to read the FAQ !\n", imagepath); getchar(); return 0;}
// Read the header, i.e. the 54 first bytes
// If less than 54 bytes are read, problem
if ( fread(header, 1, 54, file)!=54 ){
printf("Not a correct BMP file\n");
return 0;
}
// A BMP files always begins with "BM"
if ( header[0]!='B' || header[1]!='M' ){
printf("Not a correct BMP file\n");
return 0;
}
// Make sure this is a 24bpp file
if ( *(int*)&(header[0x1E])!=0 ) {printf("Not a correct BMP file\n"); return 0;}
if ( *(int*)&(header[0x1C])!=24 ) {printf("Not a correct BMP file\n"); return 0;}
// Read the information about the image
dataPos = *(int*)&(header[0x0A]);
imageSize = *(int*)&(header[0x22]);
width = *(int*)&(header[0x12]);
height = *(int*)&(header[0x16]);
// Some BMP files are misformatted, guess missing information
if (imageSize==0) imageSize=width*height*3; // 3 : one byte for each Red, Green and Blue component
if (dataPos==0) dataPos=54; // The BMP header is done that way
// Create a buffer
data = new unsigned char [imageSize];
// Read the actual data from the file into the buffer
fread(data,1,imageSize,file);
// Everything is in memory now, the file wan be closed
fclose (file);
// Create one OpenGL texture
GLuint textureID;
glGenTextures(1, &textureID);
// "Bind" the newly created texture : all future texture functions will modify this texture
glBindTexture(GL_TEXTURE_2D, textureID);
// Give the image to OpenGL
glTexImage2D(GL_TEXTURE_2D, 0,GL_RGB, width, height, 0, GL_BGR, GL_UNSIGNED_BYTE, data);
// OpenGL has now copied the data. Free our own version
delete [] data;
// Poor filtering, or ...
//glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
//glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
// ... nice trilinear filtering.
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glGenerateMipmap(GL_TEXTURE_2D);
// Return the ID of the texture we just created
return textureID;
}
// Since GLFW 3, glfwLoadTexture2D() has been removed. You have to use another texture loading library,
// or do it yourself (just like loadBMP_custom and loadDDS)
//GLuint loadTGA_glfw(const char * imagepath){
//
// // Create one OpenGL texture
// GLuint textureID;
// glGenTextures(1, &textureID);
//
// // "Bind" the newly created texture : all future texture functions will modify this texture
// glBindTexture(GL_TEXTURE_2D, textureID);
//
// // Read the file, call glTexImage2D with the right parameters
// glfwLoadTexture2D(imagepath, 0);
//
// // Nice trilinear filtering.
// glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
// glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
// glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
// glGenerateMipmap(GL_TEXTURE_2D);
//
// // Return the ID of the texture we just created
// return textureID;
//}
#define FOURCC_DXT1 0x31545844 // Equivalent to "DXT1" in ASCII
#define FOURCC_DXT3 0x33545844 // Equivalent to "DXT3" in ASCII
#define FOURCC_DXT5 0x35545844 // Equivalent to "DXT5" in ASCII
GLuint loadDDS(const char * imagepath){
unsigned char header[124];
FILE *fp;
/* try to open the file */
fp = fopen(imagepath, "rb");
if (fp == NULL){
printf("%s could not be opened. Are you in the right directory ? Don't forget to read the FAQ !\n", imagepath); getchar();
return 0;
}
/* verify the type of file */
char filecode[4];
fread(filecode, 1, 4, fp);
if (strncmp(filecode, "DDS ", 4) != 0) {
fclose(fp);
return 0;
}
/* get the surface desc */
fread(&header, 124, 1, fp);
unsigned int height = *(unsigned int*)&(header[8 ]);
unsigned int width = *(unsigned int*)&(header[12]);
unsigned int linearSize = *(unsigned int*)&(header[16]);
unsigned int mipMapCount = *(unsigned int*)&(header[24]);
unsigned int fourCC = *(unsigned int*)&(header[80]);
unsigned char * buffer;
unsigned int bufsize;
/* how big is it going to be including all mipmaps? */
bufsize = mipMapCount > 1 ? linearSize * 2 : linearSize;
buffer = (unsigned char*)malloc(bufsize * sizeof(unsigned char));
fread(buffer, 1, bufsize, fp);
/* close the file pointer */
fclose(fp);
unsigned int components = (fourCC == FOURCC_DXT1) ? 3 : 4;
unsigned int format;
switch(fourCC)
{
case FOURCC_DXT1:
format = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT;
break;
case FOURCC_DXT3:
format = GL_COMPRESSED_RGBA_S3TC_DXT3_EXT;
break;
case FOURCC_DXT5:
format = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
break;
default:
free(buffer);
return 0;
}
// Create one OpenGL texture
GLuint textureID;
glGenTextures(1, &textureID);
// "Bind" the newly created texture : all future texture functions will modify this texture
glBindTexture(GL_TEXTURE_2D, textureID);
glPixelStorei(GL_UNPACK_ALIGNMENT,1);
unsigned int blockSize = (format == GL_COMPRESSED_RGBA_S3TC_DXT1_EXT) ? 8 : 16;
unsigned int offset = 0;
/* load the mipmaps */
for (unsigned int level = 0; level < mipMapCount && (width || height); ++level)
{
unsigned int size = ((width+3)/4)*((height+3)/4)*blockSize;
glCompressedTexImage2D(GL_TEXTURE_2D, level, format, width, height,
0, size, buffer + offset);
offset += size;
width /= 2;
height /= 2;
// Deal with Non-Power-Of-Two textures. This code is not included in the webpage to reduce clutter.
if(width < 1) width = 1;
if(height < 1) height = 1;
}
free(buffer);
return textureID;
}
知识点3:提高纹理质量
在loadBMP_custom函数中,有如下两行代码:
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
这意味着在片段着色器中,texture()将直接提取位于(U,V)坐标的纹素(texel)。造成一下的效果:
有几种方法可以改善这一状况。
线性过滤(Linear filtering)
若采用线性过滤。texture()会查看周围的纹素,然后根据UV坐标距离各纹素中心的距离来混合颜色。这就避免了前面看到的锯齿状边缘。
线性过滤可以显著改善纹理质量,应用的也很多。但若想获得更高质量的纹理,可以采用各向异性过滤,不过速度有些慢。
各向异性过滤(Anisotropic filtering)
这种方法逼近了真正片断中的纹素区块。例如下图中稍稍旋转了的纹理,各向异性过滤将沿蓝色矩形框的主方向,作一定数量的采样(即所谓的”各向异性层级”),计算出其内的颜色。
Mipmaps
线性过滤和各向异性过滤都存在一个共同的问题。那就是如果从远处观察纹理,只对4个纹素作混合显得不够。实际上,如果3D模型位于很远的地方,屏幕上只看得见一个片断(像素),那计算平均值得出最终颜色值时,图像所有的纹素都应该考虑在内。很显然,这种做法没有考虑性能问题。撇开两种过滤方法不谈,这里要介绍的是mipmap技术:
一开始,把图像缩小到原来的1/2,然后依次缩小,直到图像只有1x1大小(应该是图像所有纹素的平均值)
绘制模型时,根据纹素大小选择合适的mipmap。
可以选用nearest、linear、anisotropic等任意一种滤波方式来对mipmap采样。
要想效果更好,可以对两个mipmap采样然后混合,得出结果。
好在这个比较简单,OpenGL都帮我们做好了,只需一个简单的调用:
// When MAGnifying the image (no bigger mipmap available), use LINEAR filtering
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// When MINifying the image, use a LINEAR blend of two mipmaps, each filtered LINEARLY too
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
// Generate mipmaps, by the way.
glGenerateMipmap(GL_TEXTURE_2D);
知识点4:使用DDS文件加载纹理
传输的数据量就少了。传输内存数据开销很大;纹理解压缩却几乎不耗时(有专门的硬件负责此事)。一般情况下,采用压缩纹理可使性能提升20%。
dds是DirectDraw Surface的缩写,实际上,它是DirectX纹理压缩(DirectX Texture Compression,简称DXTC)的产物。DXTC减少了纹理内存消耗的50%甚至更多,有3种DXTC的格式可供使用,它们分别是DXT1,DXT3和DXT5。
知识点5:十分重要的一点:** 使用2次幂(power-of-two)的纹理!**
优质纹理: 128128, 256256, 10241024, 2*2…
劣质纹理: 127128, 35, …
勉强可以但很怪异的纹理: 128*256
代码的特别之处:
1:翻转了UV坐标,适应于OpenGL
2:使用了自己的bmp纹理:注意添加自己的文件时,需要放在源文件中,不是生成的工程文件中。
// Include standard headers
#include <stdio.h>
#include <stdlib.h>
// Include GLEW
#include <GL/glew.h>
// Include GLFW
#include <glfw3.h>
GLFWwindow* window;
// Include GLM
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
using namespace glm;
#include <common/shader.hpp>
#include <common/texture.hpp>
int main( void )
{
// Initialise GLFW
if( !glfwInit() )
{
fprintf( stderr, "Failed to initialize GLFW\n" );
return -1;
}
glfwWindowHint(GLFW_SAMPLES, 4);
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); // To make MacOS happy; should not be needed
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
// Open a window and create its OpenGL context
window = glfwCreateWindow( 1024, 768, "Tutorial 05 - Textured Cube", NULL, NULL);
if( window == NULL ){
fprintf( stderr, "Failed to open GLFW window. If you have an Intel GPU, they are not 3.3 compatible. Try the 2.1 version of the tutorials.\n" );
glfwTerminate();
return -1;
}
glfwMakeContextCurrent(window);
// Initialize GLEW
glewExperimental = true; // Needed for core profile
if (glewInit() != GLEW_OK) {
fprintf(stderr, "Failed to initialize GLEW\n");
return -1;
}
// Ensure we can capture the escape key being pressed below
glfwSetInputMode(window, GLFW_STICKY_KEYS, GL_TRUE);
// Dark blue background
glClearColor(0.0f, 0.0f, 0.4f, 0.0f);
// Enable depth test
glEnable(GL_DEPTH_TEST);
// Accept fragment if it closer to the camera than the former one
glDepthFunc(GL_LESS);
GLuint VertexArrayID;
glGenVertexArrays(1, &VertexArrayID);
glBindVertexArray(VertexArrayID);
// Create and compile our GLSL program from the shaders
GLuint programID = LoadShaders( "TransformVertexShader.vertexshader", "TextureFragmentShader.fragmentshader" );
// Get a handle for our "MVP" uniform
GLuint MatrixID = glGetUniformLocation(programID, "MVP");
// Projection matrix : 45?Field of View, 4:3 ratio, display range : 0.1 unit <-> 100 units
glm::mat4 Projection = glm::perspective(45.0f, 4.0f / 3.0f, 0.1f, 100.0f);
// Camera matrix
glm::mat4 View = glm::lookAt(
glm::vec3(4,3,3), // Camera is at (4,3,3), in World Space
glm::vec3(0,0,0), // and looks at the origin
glm::vec3(0,1,0) // Head is up (set to 0,-1,0 to look upside-down)
);
// Model matrix : an identity matrix (model will be at the origin)
glm::mat4 Model = glm::mat4(1.0f);
// Our ModelViewProjection : multiplication of our 3 matrices
glm::mat4 MVP = Projection * View * Model; // Remember, matrix multiplication is the other way around
// Load the texture using any two methods
GLuint Texture = loadBMP_custom("47.bmp");
/*GLuint Texture = loadDDS("uvtemplate.DDS");*/
// Get a handle for our "myTextureSampler" uniform
GLuint TextureID = glGetUniformLocation(programID, "myTextureSampler");
// Our vertices. Tree consecutive floats give a 3D vertex; Three consecutive vertices give a triangle.
// A cube has 6 faces with 2 triangles each, so this makes 6*2=12 triangles, and 12*3 vertices
static const GLfloat g_vertex_buffer_data[] = {
-1.0f,-1.0f,-1.0f,
-1.0f,-1.0f, 1.0f,
-1.0f, 1.0f, 1.0f,
1.0f, 1.0f,-1.0f,
-1.0f,-1.0f,-1.0f,
-1.0f, 1.0f,-1.0f,
1.0f,-1.0f, 1.0f,
-1.0f,-1.0f,-1.0f,
1.0f,-1.0f,-1.0f,
1.0f, 1.0f,-1.0f,
1.0f,-1.0f,-1.0f,
-1.0f,-1.0f,-1.0f,
-1.0f,-1.0f,-1.0f,
-1.0f, 1.0f, 1.0f,
-1.0f, 1.0f,-1.0f,
1.0f,-1.0f, 1.0f,
-1.0f,-1.0f, 1.0f,
-1.0f,-1.0f,-1.0f,
-1.0f, 1.0f, 1.0f,
-1.0f,-1.0f, 1.0f,
1.0f,-1.0f, 1.0f,
1.0f, 1.0f, 1.0f,
1.0f,-1.0f,-1.0f,
1.0f, 1.0f,-1.0f,
1.0f,-1.0f,-1.0f,
1.0f, 1.0f, 1.0f,
1.0f,-1.0f, 1.0f,
1.0f, 1.0f, 1.0f,
1.0f, 1.0f,-1.0f,
-1.0f, 1.0f,-1.0f,
1.0f, 1.0f, 1.0f,
-1.0f, 1.0f,-1.0f,
-1.0f, 1.0f, 1.0f,
1.0f, 1.0f, 1.0f,
-1.0f, 1.0f, 1.0f,
1.0f,-1.0f, 1.0f
};
// Two UV coordinatesfor each vertex. They were created withe Blender.
static GLfloat g_uv_buffer_data[] = {
0.000059f, 1.0f-0.000004f,
0.000103f, 1.0f-0.336048f,
0.335973f, 1.0f-0.335903f,
1.000023f, 1.0f-0.000013f,
0.667979f, 1.0f-0.335851f,
0.999958f, 1.0f-0.336064f,
0.667979f, 1.0f-0.335851f,
0.336024f, 1.0f-0.671877f,
0.667969f, 1.0f-0.671889f,
1.000023f, 1.0f-0.000013f,
0.668104f, 1.0f-0.000013f,
0.667979f, 1.0f-0.335851f,
0.000059f, 1.0f-0.000004f,
0.335973f, 1.0f-0.335903f,
0.336098f, 1.0f-0.000071f,
0.667979f, 1.0f-0.335851f,
0.335973f, 1.0f-0.335903f,
0.336024f, 1.0f-0.671877f,
1.000004f, 1.0f-0.671847f,
0.999958f, 1.0f-0.336064f,
0.667979f, 1.0f-0.335851f,
0.668104f, 1.0f-0.000013f,
0.335973f, 1.0f-0.335903f,
0.667979f, 1.0f-0.335851f,
0.335973f, 1.0f-0.335903f,
0.668104f, 1.0f-0.000013f,
0.336098f, 1.0f-0.000071f,
0.000103f, 1.0f-0.336048f,
0.000004f, 1.0f-0.671870f,
0.336024f, 1.0f-0.671877f,
0.000103f, 1.0f-0.336048f,
0.336024f, 1.0f-0.671877f,
0.335973f, 1.0f-0.335903f,
0.667969f, 1.0f-0.671889f,
1.000004f, 1.0f-0.671847f,
0.667979f, 1.0f-0.335851f
};
//纹理坐标的改动
for (int i = 0; i < 36; ++i)
{
g_uv_buffer_data[i*2+1] = 1 - g_uv_buffer_data[i*2+1];
}
GLuint vertexbuffer;
glGenBuffers(1, &vertexbuffer);
glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer);
glBufferData(GL_ARRAY_BUFFER, sizeof(g_vertex_buffer_data), g_vertex_buffer_data, GL_STATIC_DRAW);
GLuint uvbuffer;
glGenBuffers(1, &uvbuffer);
glBindBuffer(GL_ARRAY_BUFFER, uvbuffer);
glBufferData(GL_ARRAY_BUFFER, sizeof(g_uv_buffer_data), g_uv_buffer_data, GL_STATIC_DRAW);
do{
// Clear the screen
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// Use our shader
glUseProgram(programID);
// Send our transformation to the currently bound shader,
// in the "MVP" uniform
glUniformMatrix4fv(MatrixID, 1, GL_FALSE, &MVP[0][0]);
// Bind our texture in Texture Unit 0
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, Texture);
// Set our "myTextureSampler" sampler to user Texture Unit 0
glUniform1i(TextureID, 0);
// 1rst attribute buffer : vertices
glEnableVertexAttribArray(0);
glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer);
glVertexAttribPointer(
0, // attribute. No particular reason for 0, but must match the layout in the shader.
3, // size
GL_FLOAT, // type
GL_FALSE, // normalized?
0, // stride
(void*)0 // array buffer offset
);
// 2nd attribute buffer : UVs
glEnableVertexAttribArray(1);
glBindBuffer(GL_ARRAY_BUFFER, uvbuffer);
glVertexAttribPointer(
1, // attribute. No particular reason for 1, but must match the layout in the shader.
2, // size : U+V => 2
GL_FLOAT, // type
GL_FALSE, // normalized?
0, // stride
(void*)0 // array buffer offset
);
// Draw the triangle !
glDrawArrays(GL_TRIANGLES, 0, 12*3); // 12*3 indices starting at 0 -> 12 triangles
glDisableVertexAttribArray(0);
glDisableVertexAttribArray(1);
// Swap buffers
glfwSwapBuffers(window);
glfwPollEvents();
} // Check if the ESC key was pressed or the window was closed
while( glfwGetKey(window, GLFW_KEY_ESCAPE ) != GLFW_PRESS &&
glfwWindowShouldClose(window) == 0 );
// Cleanup VBO and shader
glDeleteBuffers(1, &vertexbuffer);
glDeleteBuffers(1, &uvbuffer);
glDeleteProgram(programID);
glDeleteTextures(1, &TextureID);
glDeleteVertexArrays(1, &VertexArrayID);
// Close OpenGL window and terminate GLFW
glfwTerminate();
return 0;
}