1.Kafka Connect
Connect是Kafka的一部分,它为在Kafka和外部存储系统之间移动数据提供了一种可靠且伸缩的方式,它为连接器插件提供了一组API和一个运行时-Connect负责运行这些插件,它们负责移动数据。Connect以worker进程集群的方式运行,基于work进程安装连接器插件,然后使用REST API管理和配置connector,这些work进程都是长时间运行的作业。connector启动额外的task,利用work节点的资源以并行的方式移动大量的数据。SourceConnector负责从源系统读取数据,并把数据对象提供给work进程,SinkConnector负责从work进程获取数据,并把它们写入目标系统。
2.Connect中一些概念
连接器:实现了Connect API,决定需要运行多少个任务,按照任务来进行数据复制,从work进程获取任务配置并将其传递下去
任务:负责将数据移入或移出Kafka
work进程:相当与connector和任务的容器,用于负责管理连接器的配置、启动连接器和连接器任务,提供REST API
转换器:kafka connect和其他存储系统直接发送或者接受数据之间转换数据
3.运行Connect
//分布模式
cd kafka/bin
sh connect-distributed.sh ../config/connect-distributed.properties
connect-distributed.properties中有一些配置:
bootstrap.servers:kafka集群信息
#相同id的connect worker属于一个Connect集群
group.id:group.id=connect-cluster
#定义数据在Kafka中存储形式
key.converter=org.apache.kafka.connect.json.JsonConverter
value.converter=org.apache.kafka.connect.json.JsonConverter
REST API查看、管理connectors
查看kafka支持的connector
curl -X GET http://ip:8083/connector-plugins
GET /connectors – 返回所有正在运行的connector名。
POST /connectors – 新建一个connector; 请求体必须是json格式并且需要包含name字段和config字段,name是connector的名字,config是json格式,必须包含你的connector的配置信息。
GET /connectors/{name} – 获取指定connetor的信息。
GET /connectors/{name}/config – 获取指定connector的配置信息。
PUT /connectors/{name}/config – 更新指定connector的配置信息。
GET /connectors/{name}/status – 获取指定connector的状态,包括它是否在运行、停止、或者失败,如果发生错误,还会列出错误的具体信息。
GET /connectors/{name}/tasks – 获取指定connector正在运行的task。
GET /connectors/{name}/tasks/{taskid}/status – 获取指定connector的task的状态信息。
PUT /connectors/{name}/pause – 暂停connector和它的task,停止数据处理知道它被恢复。
PUT /connectors/{name}/resume – 恢复一个被暂停的connector。
POST /connectors/{name}/restart – 重启一个connector,尤其是在一个connector运行失败的情况下比较常用
POST /connectors/{name}/tasks/{taskId}/restart – 重启一个task,一般是因为它运行失败才这样做。
DELETE /connectors/{name} – 删除一个connector,停止它的所有task并删除配置。
apache kafka默认支持FileStreamSinkConnector、FileStreamSourceConnector。Confluent实现很多开源的connector,也可以自己根据Connect API实现自定义的connector。
4. 连接器示例-从MySQL到ElasticSearch
4.1 下载连接器
confluentinc-kafka-connect-elasticsearch-5.0.0、confluentinc-kafka-connect-jdbc-5.0.0,将两个文件中lib中jar包放在运行connect worker节点中kafka安装路径下的lib目录,另外mysql-connector-java-5.1.22.jar也要放进去
confluent 中的连接器使用说明 https://docs.confluent.io/2.0.0/connect/connect-jdbc/docs/index.html
4.2 重启Connect
验证插件是否加载成功
curl -X GET http://ip:8083/connector-plugins
[{"class":"io.confluent.connect.elasticsearch.ElasticsearchSinkConnector","type":"sink","version":"5.0.0"},{"class":"io.confluent.connect.jdbc.JdbcSinkConnector","type":"sink","version":"5.0.0"},{"class":"io.confluent.connect.jdbc.JdbcSourceConnector","type":"source","version":"5.0.0"},{"class":"org.apache.kafka.connect.file.FileStreamSinkConnector","type":"sink","version":"1.0"},{"class":"org.apache.kafka.connect.file.FileStreamSourceConnector","type":"source","version":"1.0"}]
4.3 mysql建立测试表
mysql> create table login(username varchar(50),login_time datetime);
Query OK, 0 rows affected (0.73 sec)
mysql> insert into login values('przhang',now());
Query OK, 1 row affected (0.03 sec)
mysql> insert into login values('peter',now());
Query OK, 1 row affected (0.00 sec)
4.4 启动jdbc-connector
echo '{"name":"mysql-login-connector","config":{"connector.class":"JdbcSourceConnector","connection.url":"jdbc:mysql://localhost:3306/dwwspdb?user=dw_wspdb&password=dw_wspdb","mode":"timestamp","table.whitelist":"login","validate.non.null":false,"timestamp.column.name":"login_time","topic.prefix":"mysql."}}' | curl -X POST -d @- http://ip:8083/connectors --header "Content-Type:application/json"
JdbcSourceConnector一些配置说明
connection.url,mysql数据库连接
mode:timestamp && "timestamp.column.name":"login_time",表示识别根据login_time时间列来识别增量数据,一旦这一列值发生变化,就会有一天新的记录写到kafka主题
mode:incrementing && "incrementing.column.id":"id",适合还有自增列的表,一旦有新的记录入mysq,就会有新的记录写到kafka主题
topic.prefix:mysql.,表示写到kafka的主题为mysql.表名
查看kafka主题中的消息
sh kafka-console-consumer.sh --bootstrap-server=kafkaip:9092 --topic mysql.login --from-beginning
{"schema":{"type":"struct","fields":[{"type":"string","optional":true,"field":"username"},{"type":"int64","optional":true,"name":"org.apache.kafka.connect.data.Timestamp","version":1,"field":"login_time"}],"optional":false,"name":"login"},"payload":{"username":"przhang","login_time":1540453531000}}
{"schema":{"type":"struct","fields":[{"type":"string","optional":true,"field":"username"},{"type":"int64","optional":true,"name":"org.apache.kafka.connect.data.Timestamp","version":1,"field":"login_time"}],"optional":false,"name":"login"},"payload":{"username":"peter","login_time":1540453540000}}
mysql数据更新:
update login set login_time=now() where username='przhang';
kafka实时输出:
{"schema":{"type":"struct","fields":[{"type":"string","optional":true,"field":"username"},{"type":"int64","optional":true,"name":"org.apache.kafka.connect.data.Timestamp","version":1,"field":"login_time"}],"optional":false,"name":"login"},"payload":{"username":"przhang","login_time":1540454254000}}
4.5 启动ElasticsearchSinkConnector
echo '{"name":"elastic-login-connector","config":{"connector.class":"ElasticsearchSinkConnector","connection.url":"http://ESIP:9200","type.name":"mysql-data","topics":"mysql.login","key.ignore":true}}' | curl -X POST -d @- http://ip:8083/connectors --header "Content-Type:application/json"
ElasticsearchSinkConnector一些配置:
connection.url,es连接
type.name,写入ES的索引类别
key.ignore=true,表示写入ES的每条记录的键为kafka主题名字+分区id+偏移量
从ES中查看数据:
curl -X GET http://ESIP:9200/mysql.login/_search?pretty=true
{
"took" : 1,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : 5,
"max_score" : 1.0,
"hits" : [
{
"_index" : "mysqllogin",
"_type" : "mysql-data",
"_id" : "mysqllogin+3+0",
"_score" : 1.0,
"_source" : {
"username" : "przhang",
"login_time" : 1540453531000
}
},
{
"_index" : "mysqllogin",
"_type" : "mysql-data",
"_id" : "mysqllogin+3+3",
"_score" : 1.0,
"_source" : {
"username" : "mayun",
"login_time" : 1540454531000
}
},
{
"_index" : "mysqllogin",
"_type" : "mysql-data",
"_id" : "mysqllogin+3+2",
"_score" : 1.0,
"_source" : {
"username" : "przhang",
"login_time" : 1540454254000
}
},
{
"_index" : "mysqllogin",
"_type" : "mysql-data",
"_id" : "mysqllogin+3+4",
"_score" : 1.0,
"_source" : {
"username" : "pony",
"login_time" : 1540473988000
}
},
{
"_index" : "mysqllogin",
"_type" : "mysql-data",
"_id" : "mysqllogin+3+1",
"_score" : 1.0,
"_source" : {
"username" : "peter",
"login_time" : 1540453540000
}
}
]
}
}