感谢的分享,补充整理了一些内容,今后会更新内容和知识点

一、人工智能学习算法分类

  • 1. 纯算法类
  • 2.建模方面
  • 二、详细算法
  • 1.分类算法
  • 2.回归算法
  • 3.聚类算法
  • 4.降维算法
  • 5.概率图模型算法
  • 6.文本挖掘算法
  • 7.正则化
  • 8.深度学习算法
  • 三、建模方面
  • 1.模型优化·
  • 2.数据预处理
一、人工智能学习算法分类

人工智能算法大体上来说可以分类两类:基于统计的机器学习算法(Machine Learning)和深度学习算法(Deep Learning)

总的来说,在sklearn中机器学习算法大概的分类如下:

1. 纯算法类

(1).回归算法
(2).分类算法
(3).聚类算法
(4)降维算法
(5)概率图模型算法
(6)文本挖掘算法
(7)优化算法
(8)深度学习算法

2.建模方面

(1).模型优化
(2).数据预处理

二、详细算法

1.分类算法

(1).LR (Logistic Regression,逻辑回归又叫逻辑分类)
(2).SVM (Support Vector Machine,支持向量机)
(3).NB (Naive Bayes,朴素贝叶斯)
(4).DT (Decision Tree,决策树)
(5).KNN (k-Nearest Neighbors,K近邻算法)

  • 1).C4.5
  • 2).ID3
  • 3).CART

(5).集成算法

  • 1).Bagging
  • 2).Random Forest (随机森林)
  • 3).GB(梯度提升,Gradient boosting)
  • 4).GBDT (Gradient Boosting Decision Tree)
  • 5).AdaBoost
  • 6).Xgboost

(6).最大熵模型

2.回归算法

(1).LR (Linear Regression,线性回归)
(2).SVR (支持向量机回归)
(3). RR (Ridge Regression,岭回归,L2正则化)
(4). Lasso Regression,L1正则化

3.聚类算法

(1).Kmeans 算法([优缺点与改进]())
(2).层次聚类
(3).密度聚类
(4).网格聚类
(5).模型聚类 GMM

4.降维算法

(1).PCA 主成分分析
(2).LDA 线性判别分析
(3).降噪自编码器
(4).t-SNE(降维后可视化效果好)

5.概率图模型算法

(1).贝叶斯网络
(2).HMM
(3).CRF (条件随机场)

6.文本挖掘算法

(1).模型

  • 1).LDA (主题生成模型,Latent Dirichlet Allocation)
  • 2).最大熵模型(其实是个多分类模型,归这里不一定合适)

(2).关键词提取

  • 1).tf-idf
  • 2).bm25
  • 3).textrank
  • 4).pagerank
  • 5).左右熵 :左右熵高的作为关键词
  • 6).[互信息]()

(3).词法分析

  • 1).分词
    – ①HMM (因马尔科夫)
    – ②CRF (条件随机场)
  • 2).词性标注
  • 3).命名实体识别

(4).句法分析

  • 1).句法结构分析
  • 2).依存句法分析

(5).文本向量化

  • 1).tf-idf
  • 2).word2vec
  • 3).doc2vec
  • 4).[cw2vec](https://www.jianshu.com/p/f258d0c5c317)

(6).距离计算

  • 1).欧氏距离
  • 2).相似度计算

7.正则化

  • 1).L1正则化
  • 2).L2正则化

8.深度学习算法

(1).BP
(2).CNN
(3).DNN
(3).RNN、LSTM、GRU
(4).Seq2Seq
(5).[Attention、Transformer、BERT]()

三、建模方面

1.模型优化·

  • (1).特征选择
  • (2).梯度下降
    [SGD系列]()
  • 梯度下降法和最速下降法的细微差别
  • (3).交叉验证
  • (4).参数调优
  • (5).模型评估:准确率、召回率、F1、AUC、ROC、损失函数

2.数据预处理

  • (1).标准化
  • (2).异常值处理
  • (3).二值化
  • (4).缺失值填充: 支持均值、中位数、特定值补差、多重插补
  • (5).不平衡样本处理(降采样,过采样)