数据筹备
7369,SMITH,CLERK,7902,1980-12-17 00:00:00,800,\N,20
7499,ALLEN,SALESMAN,7698,1981-02-20 00:00:00,1600,300,30
7521,WARD,SALESMAN,7698,1981-02-22 00:00:00,1250,500,30
7566,JONES,MANAGER,7839,1981-04-02 00:00:00,2975,\N,20
7654,MARTIN,SALESMAN,7698,1981-09-28 00:00:00,1250,1400,30
7698,BLAKE,MANAGER,7839,1981-05-01 00:00:00,2850,\N,30
7782,CLARK,MANAGER,7839,1981-06-09 00:00:00,2450,\N,10
7788,SCOTT,ANALYST,7566,1987-04-19 00:00:00,1500,\N,20
7839,KING,PRESIDENT,\N,1981-11-17 00:00:00,5000,\N,10
7844,TURNER,SALESMAN,7698,1981-09-08 00:00:00,1500,0,30
7876,ADAMS,CLERK,7788,1987-05-23 00:00:00,1100,\N,20
7900,JAMES,CLERK,7698,1981-12-03 00:00:00,950,\N,30
7902,FORD,ANALYST,7566,1981-12-03 00:00:00,3000,\N,20
7934,MILLER,CLERK,7782,1982-01-23 00:00:00,1300,\N,10
CREATE TABLE t_employee(
empno INT,
ename STRING,
job STRING,
mgr INT,
hiredate TIMESTAMP,
sal DECIMAL(7,2),
comm DECIMAL(7,2),
deptno INT)
row format delimited
fields terminated by ','
collection items terminated by '|'
map keys terminated by '>'
lines terminated by '\n'
stored as textfile;
10,ACCOUNTING,NEW YORK
20,RESEARCH,DALLAS
30,SALES,CHICAGO
40,OPERATIONS,BOSTON
CREATE TABLE t_dept(
DEPTNO INT,
DNAME STRING,
LOC STRING)
row format delimited
fields terminated by ','
collection items terminated by '|'
map keys terminated by '>'
lines terminated by '\n'
stored as textfile;
0: jdbc:hive2://CentOS:10000> select empno,ename,job,mgr,hiredate,sal,comm,deptno from t_employee;
+--------+---------+------------+-------+------------------------+-------+-------+---------+--+
| empno | ename | job | mgr | hiredate | sal | comm | deptno |
+--------+---------+------------+-------+------------------------+-------+-------+---------+--+
| 7369 | SMITH | CLERK | 7902 | 1980-12-17 00:00:00.0 | 800 | NULL | 20 |
| 7499 | ALLEN | SALESMAN | 7698 | 1981-02-20 00:00:00.0 | 1600 | 300 | 30 |
| 7521 | WARD | SALESMAN | 7698 | 1981-02-22 00:00:00.0 | 1250 | 500 | 30 |
| 7566 | JONES | MANAGER | 7839 | 1981-04-02 00:00:00.0 | 2975 | NULL | 20 |
| 7654 | MARTIN | SALESMAN | 7698 | 1981-09-28 00:00:00.0 | 1250 | 1400 | 30 |
| 7698 | BLAKE | MANAGER | 7839 | 1981-05-01 00:00:00.0 | 2850 | NULL | 30 |
| 7782 | CLARK | MANAGER | 7839 | 1981-06-09 00:00:00.0 | 2450 | NULL | 10 |
| 7788 | SCOTT | ANALYST | 7566 | 1987-04-19 00:00:00.0 | 1500 | NULL | 20 |
| 7839 | KING | PRESIDENT | NULL | 1981-11-17 00:00:00.0 | 5000 | NULL | 10 |
| 7844 | TURNER | SALESMAN | 7698 | 1981-09-08 00:00:00.0 | 1500 | 0 | 30 |
| 7876 | ADAMS | CLERK | 7788 | 1987-05-23 00:00:00.0 | 1100 | NULL | 20 |
| 7900 | JAMES | CLERK | 7698 | 1981-12-03 00:00:00.0 | 950 | NULL | 30 |
| 7902 | FORD | ANALYST | 7566 | 1981-12-03 00:00:00.0 | 3000 | NULL | 20 |
| 7934 | MILLER | CLERK | 7782 | 1982-01-23 00:00:00.0 | 1300 | NULL | 10 |
+--------+---------+------------+-------+------------------------+-------+-------+---------+--+
14 rows selected (0.047 seconds)
0: jdbc:hive2://CentOS:10000> select deptno,dname,loc from t_dept;
+---------+-------------+-----------+--+
| deptno | dname | loc |
+---------+-------------+-----------+--+
| 10 | ACCOUNTING | NEW YORK |
| 20 | RESEARCH | DALLAS |
| 30 | SALES | CHICAGO |
| 40 | OPERATIONS | BOSTON |
+---------+-------------+-----------+--+
4 rows selected (0.046 seconds)
CREATE TABLE t_employee_partition(
empno INT,
ename STRING,
job STRING,
mgr INT,
hiredate TIMESTAMP,
sal DECIMAL(7,2),
comm DECIMAL(7,2))
PARTITIONED BY(deptno INT)
row format delimited
fields terminated by ','
collection items terminated by '|'
map keys terminated by '>'
lines terminated by '\n'
stored as textfile;
0: jdbc:hive2://CentOS:10000> set hive.exec.dynamic.partition.mode=nonstrict
0: jdbc:hive2://CentOS:10000> INSERT OVERWRITE TABLE t_employee_partition PARTITION (deptno) SELECT empno,ename,job,mgr,hiredate,sal,comm,deptno FROM t_employee;
SQL查询
单表查询
0: jdbc:hive2://CentOS:10000> select empno,ename,job,mgr,hiredate,sal,comm,deptno from t_employee;
+--------+---------+------------+-------+------------------------+-------+-------+---------+--+
| empno | ename | job | mgr | hiredate | sal | comm | deptno |
+--------+---------+------------+-------+------------------------+-------+-------+---------+--+
| 7369 | SMITH | CLERK | 7902 | 1980-12-17 00:00:00.0 | 800 | NULL | 20 |
| 7499 | ALLEN | SALESMAN | 7698 | 1981-02-20 00:00:00.0 | 1600 | 300 | 30 |
| 7521 | WARD | SALESMAN | 7698 | 1981-02-22 00:00:00.0 | 1250 | 500 | 30 |
| 7566 | JONES | MANAGER | 7839 | 1981-04-02 00:00:00.0 | 2975 | NULL | 20 |
| 7654 | MARTIN | SALESMAN | 7698 | 1981-09-28 00:00:00.0 | 1250 | 1400 | 30 |
| 7698 | BLAKE | MANAGER | 7839 | 1981-05-01 00:00:00.0 | 2850 | NULL | 30 |
| 7782 | CLARK | MANAGER | 7839 | 1981-06-09 00:00:00.0 | 2450 | NULL | 10 |
| 7788 | SCOTT | ANALYST | 7566 | 1987-04-19 00:00:00.0 | 1500 | NULL | 20 |
| 7839 | KING | PRESIDENT | NULL | 1981-11-17 00:00:00.0 | 5000 | NULL | 10 |
| 7844 | TURNER | SALESMAN | 7698 | 1981-09-08 00:00:00.0 | 1500 | 0 | 30 |
| 7876 | ADAMS | CLERK | 7788 | 1987-05-23 00:00:00.0 | 1100 | NULL | 20 |
| 7900 | JAMES | CLERK | 7698 | 1981-12-03 00:00:00.0 | 950 | NULL | 30 |
| 7902 | FORD | ANALYST | 7566 | 1981-12-03 00:00:00.0 | 3000 | NULL | 20 |
| 7934 | MILLER | CLERK | 7782 | 1982-01-23 00:00:00.0 | 1300 | NULL | 10 |
+--------+---------+------------+-------+------------------------+-------+-------+---------+--+
14 rows selected (0.056 seconds)
WHERE查询
0: jdbc:hive2://CentOS:10000> SELECT empno,ename,job,mgr,hiredate,sal,comm,deptno FROM t_employee WHERE empno > 7782 AND deptno = 10;
+--------+---------+------------+-------+------------------------+-------+-------+---------+--+
| empno | ename | job | mgr | hiredate | sal | comm | deptno |
+--------+---------+------------+-------+------------------------+-------+-------+---------+--+
| 7839 | KING | PRESIDENT | NULL | 1981-11-17 00:00:00.0 | 5000 | NULL | 10 |
| 7934 | MILLER | CLERK | 7782 | 1982-01-23 00:00:00.0 | 1300 | NULL | 10 |
+--------+---------+------------+-------+------------------------+-------+-------+---------+--+
2 rows selected (0.067 seconds)
DISTINCT查询
0: jdbc:hive2://CentOS:10000> select distinct(job) from t_employee;
+------------+--+
| job |
+------------+--+
| ANALYST |
| CLERK |
| MANAGER |
| PRESIDENT |
| SALESMAN |
+------------+--+
分区查询
0: jdbc:hive2://CentOS:10000> SELECT empno,ename,job,mgr,hiredate,sal,comm,deptno FROM t_employee_partition e WHERE e.deptno >= 20 AND e.deptno <= 40;
+--------+---------+-----------+-------+------------------------+-------+-------+---------+--+
| empno | ename | job | mgr | hiredate | sal | comm | deptno |
+--------+---------+-----------+-------+------------------------+-------+-------+---------+--+
| 7369 | SMITH | CLERK | 7902 | 1980-12-17 00:00:00.0 | 800 | NULL | 20 |
| 7566 | JONES | MANAGER | 7839 | 1981-04-02 00:00:00.0 | 2975 | NULL | 20 |
| 7788 | SCOTT | ANALYST | 7566 | 1987-04-19 00:00:00.0 | 1500 | NULL | 20 |
| 7876 | ADAMS | CLERK | 7788 | 1987-05-23 00:00:00.0 | 1100 | NULL | 20 |
| 7902 | FORD | ANALYST | 7566 | 1981-12-03 00:00:00.0 | 3000 | NULL | 20 |
| 7499 | ALLEN | SALESMAN | 7698 | 1981-02-20 00:00:00.0 | 1600 | 300 | 30 |
| 7521 | WARD | SALESMAN | 7698 | 1981-02-22 00:00:00.0 | 1250 | 500 | 30 |
| 7654 | MARTIN | SALESMAN | 7698 | 1981-09-28 00:00:00.0 | 1250 | 1400 | 30 |
| 7698 | BLAKE | MANAGER | 7839 | 1981-05-01 00:00:00.0 | 2850 | NULL | 30 |
| 7844 | TURNER | SALESMAN | 7698 | 1981-09-08 00:00:00.0 | 1500 | 0 | 30 |
| 7900 | JAMES | CLERK | 7698 | 1981-12-03 00:00:00.0 | 950 | NULL | 30 |
+--------+---------+-----------+-------+------------------------+-------+-------+---------+--+
11 rows selected (0.123 seconds)
LIMIT查询
0: jdbc:hive2://CentOS:10000> SELECT empno,ename,job,mgr,hiredate,sal,comm,deptno FROM t_employee ORDER BY sal DESC LIMIT 5;
+--------+--------+------------+-------+------------------------+-------+-------+---------+--+
| empno | ename | job | mgr | hiredate | sal | comm | deptno |
+--------+--------+------------+-------+------------------------+-------+-------+---------+--+
| 7839 | KING | PRESIDENT | NULL | 1981-11-17 00:00:00.0 | 5000 | NULL | 10 |
| 7902 | FORD | ANALYST | 7566 | 1981-12-03 00:00:00.0 | 3000 | NULL | 20 |
| 7566 | JONES | MANAGER | 7839 | 1981-04-02 00:00:00.0 | 2975 | NULL | 20 |
| 7698 | BLAKE | MANAGER | 7839 | 1981-05-01 00:00:00.0 | 2850 | NULL | 30 |
| 7782 | CLARK | MANAGER | 7839 | 1981-06-09 00:00:00.0 | 2450 | NULL | 10 |
+--------+--------+------------+-------+------------------------+-------+-------+---------+--+
5 rows selected (14.294 seconds)
GROUP BY查询
0: jdbc:hive2://CentOS:10000> set hive.map.aggr=true;
0: jdbc:hive2://CentOS:10000> SELECT deptno,SUM(sal) as total FROM t_employee GROUP BY deptno;
+---------+--------+--+
| deptno | total |
+---------+--------+--+
| 10 | 8750 |
| 20 | 9375 |
| 30 | 9400 |
+---------+--------+--+
3 rows selected (12.645 seconds)
hive.map.aggr
控制程序如何进行聚合。默认值为false。如果设置为true,Hive会在map阶段就执行一次聚合。这可以提高聚合效率,但需要消耗更多内存。
ORDER AND SORT
可以使用ORDER BY或者Sort BY对查询结果进行排序,排序字段可以是整型也可以是字符串:如果是整型,则按照大小排序;如果是字符串,则按照字典序排序。ORDER BY 和 SORT BY 的区别如下:使用ORDER BY时会有一个Reducer对全部查询结果进行排序,可以保证数据的全局有序性;使用SORT BY时只会在每个Reducer中进行排序,这可以保证每个Reducer的输出数据是有序的,但不能保证全局有序。由于ORDER BY的时间可能很长,如果你设置了严格模式(hive.mapred.mode = strict),则其后面必须再跟一个limit子句。
- sort by
0: jdbc:hive2://CentOS:10000> set mapreduce.job.reduces=2
0: jdbc:hive2://CentOS:10000> SELECT empno,ename,sal from t_employee sort by sal desc;
+--------+---------+-------+--+
| empno | ename | sal |
+--------+---------+-------+--+
| 7902 | FORD | 3000 |
| 7566 | JONES | 2975 |
| 7844 | TURNER | 1500 |
| 7788 | SCOTT | 1500 |
| 7521 | WARD | 1250 |
| 7654 | MARTIN | 1250 |
| 7876 | ADAMS | 1100 |
| 7900 | JAMES | 950 |
| 7369 | SMITH | 800 |
| 7839 | KING | 5000 |
| 7698 | BLAKE | 2850 |
| 7782 | CLARK | 2450 |
| 7499 | ALLEN | 1600 |
| 7934 | MILLER | 1300 |
+--------+---------+-------+--+
14 rows selected (14.474 seconds)
- order by
0: jdbc:hive2://CentOS:10000> set mapreduce.job.reduces=3;
0: jdbc:hive2://CentOS:10000> SELECT empno,ename,sal from t_employee order by sal desc;
+--------+---------+-------+--+
| empno | ename | sal |
+--------+---------+-------+--+
| 7839 | KING | 5000 |
| 7902 | FORD | 3000 |
| 7566 | JONES | 2975 |
| 7698 | BLAKE | 2850 |
| 7782 | CLARK | 2450 |
| 7499 | ALLEN | 1600 |
| 7844 | TURNER | 1500 |
| 7788 | SCOTT | 1500 |
| 7934 | MILLER | 1300 |
| 7654 | MARTIN | 1250 |
| 7521 | WARD | 1250 |
| 7876 | ADAMS | 1100 |
| 7900 | JAMES | 950 |
| 7369 | SMITH | 800 |
+--------+---------+-------+--+
14 rows selected (13.049 seconds)
0: jdbc:hive2://CentOS:10000> set hive.mapred.mode = strict;
No rows affected (0.004 seconds)
0: jdbc:hive2://CentOS:10000> SELECT empno,ename,sal from t_employee order by sal desc;
Error: Error while compiling statement: FAILED: SemanticException 1:48 In strict mode, if ORDER BY is specified, LIMIT must also be specified. Error encountered near token 'sal' (state=42000,code=40000)
0: jdbc:hive2://CentOS:10000> SELECT empno,ename,sal from t_employee order by sal desc limit 5;
+--------+--------+-------+--+
| empno | ename | sal |
+--------+--------+-------+--+
| 7839 | KING | 5000 |
| 7902 | FORD | 3000 |
| 7566 | JONES | 2975 |
| 7698 | BLAKE | 2850 |
| 7782 | CLARK | 2450 |
+--------+--------+-------+--+
5 rows selected (12.468 seconds)
8、HAVING过滤
0: jdbc:hive2://CentOS:10000> SELECT deptno,SUM(sal) total FROM t_employee GROUP BY deptno HAVING SUM(sal)>9000;
+---------+--------+--+
| deptno | total |
+---------+--------+--+
| 30 | 9400 |
| 20 | 9375 |
+---------+--------+--+
2 rows selected (18.361 seconds)
DISTRIBUTE BY
默认情况下,MapReduce程序会对Map输出结果的Key值进行散列,并均匀分发到所有Reducer上。如果想要把具有相同Key值的数据分发到同一个Reducer进行处理,这就需要使用DISTRIBUTE BY字句。需要注意的是,DISTRIBUTE BY虽然能保证具有相同Key值的数据分发到同一个Reducer,但是不能保证数据在Reducer上是有序的。
0: jdbc:hive2://CentOS:10000> SELECT empno,ename,sal, deptno FROM t_employee distribute BY deptno;
+--------+---------+-------+---------+--+
| empno | ename | sal | deptno |
+--------+---------+-------+---------+--+
| 7654 | MARTIN | 1250 | 30 |
| 7900 | JAMES | 950 | 30 |
| 7698 | BLAKE | 2850 | 30 |
| 7521 | WARD | 1250 | 30 |
| 7844 | TURNER | 1500 | 30 |
| 7499 | ALLEN | 1600 | 30 |
| 7934 | MILLER | 1300 | 10 |
| 7839 | KING | 5000 | 10 |
| 7782 | CLARK | 2450 | 10 |
| 7788 | SCOTT | 1500 | 20 |
| 7566 | JONES | 2975 | 20 |
| 7876 | ADAMS | 1100 | 20 |
| 7902 | FORD | 3000 | 20 |
| 7369 | SMITH | 800 | 20 |
+--------+---------+-------+---------+--+
14 rows selected (15.504 seconds)
0: jdbc:hive2://CentOS:10000> SELECT empno,ename,sal, deptno FROM t_employee distribute BY deptno sort by sal desc;
+--------+---------+-------+---------+--+
| empno | ename | sal | deptno |
+--------+---------+-------+---------+--+
| 7698 | BLAKE | 2850 | 30 |
| 7499 | ALLEN | 1600 | 30 |
| 7844 | TURNER | 1500 | 30 |
| 7521 | WARD | 1250 | 30 |
| 7654 | MARTIN | 1250 | 30 |
| 7900 | JAMES | 950 | 30 |
| 7839 | KING | 5000 | 10 |
| 7782 | CLARK | 2450 | 10 |
| 7934 | MILLER | 1300 | 10 |
| 7902 | FORD | 3000 | 20 |
| 7566 | JONES | 2975 | 20 |
| 7788 | SCOTT | 1500 | 20 |
| 7876 | ADAMS | 1100 | 20 |
| 7369 | SMITH | 800 | 20 |
+--------+---------+-------+---------+--+
14 rows selected (16.528 seconds)
CLUSTER BY
如果SORT BY
和DISTRIBUTE BY
指定的是相同字段,且SORT BY排序规则是ASC,此时可以使用CLUSTER BY
进行替换。
0: jdbc:hive2://CentOS:10000> SELECT empno,ename,sal, deptno FROM t_employee cluster by deptno;
+--------+---------+-------+---------+--+
| empno | ename | sal | deptno |
+--------+---------+-------+---------+--+
| 7934 | MILLER | 1300 | 10 |
| 7839 | KING | 5000 | 10 |
| 7782 | CLARK | 2450 | 10 |
| 7876 | ADAMS | 1100 | 20 |
| 7788 | SCOTT | 1500 | 20 |
| 7369 | SMITH | 800 | 20 |
| 7566 | JONES | 2975 | 20 |
| 7902 | FORD | 3000 | 20 |
| 7844 | TURNER | 1500 | 30 |
| 7499 | ALLEN | 1600 | 30 |
| 7698 | BLAKE | 2850 | 30 |
| 7654 | MARTIN | 1250 | 30 |
| 7521 | WARD | 1250 | 30 |
| 7900 | JAMES | 950 | 30 |
+--------+---------+-------+---------+--+
14 rows selected (25.847 seconds)
表Join查询
Hive支持内连接,外连接,左外连接,右外连接,笛卡尔连接,这和传统数据库中的概念是一致的。需要特别强调:JOIN语句的关联条件必须用ON指定,不能用WHERE指定,否则就会先做笛卡尔积,再过滤,这会导致你得不到预期的结果。
- 内连接
0: jdbc:hive2://CentOS:10000> SELECT e.empno,e.ename,e.sal,d.dname,d.deptno FROM t_employee e JOIN t_dept d ON e.deptno = d.deptno WHERE e.empno=7369;
+----------+----------+--------+-----------+-----------+--+
| e.empno | e.ename | e.sal | d.dname | d.deptno |
+----------+----------+--------+-----------+-----------+--+
| 7369 | SMITH | 800 | RESEARCH | 20 |
+----------+----------+--------+-----------+-----------+--+
1 row selected (10.419 seconds)
- 外连接
0: jdbc:hive2://CentOS:10000> SELECT e.empno,e.ename,e.sal,d.dname,d.deptno FROM t_employee e LEFT OUTER JOIN t_dept d ON e.deptno = d.deptno;
+----------+----------+--------+-------------+-----------+--+
| e.empno | e.ename | e.sal | d.dname | d.deptno |
+----------+----------+--------+-------------+-----------+--+
| 7369 | SMITH | 800 | RESEARCH | 20 |
| 7499 | ALLEN | 1600 | SALES | 30 |
| 7521 | WARD | 1250 | SALES | 30 |
| 7566 | JONES | 2975 | RESEARCH | 20 |
| 7654 | MARTIN | 1250 | SALES | 30 |
| 7698 | BLAKE | 2850 | SALES | 30 |
| 7782 | CLARK | 2450 | ACCOUNTING | 10 |
| 7788 | SCOTT | 1500 | RESEARCH | 20 |
| 7839 | KING | 5000 | ACCOUNTING | 10 |
| 7844 | TURNER | 1500 | SALES | 30 |
| 7876 | ADAMS | 1100 | RESEARCH | 20 |
| 7900 | JAMES | 950 | SALES | 30 |
| 7902 | FORD | 3000 | RESEARCH | 20 |
| 7934 | MILLER | 1300 | ACCOUNTING | 10 |
+----------+----------+--------+-------------+-----------+--+
14 rows selected (11.424 seconds)
0: jdbc:hive2://CentOS:10000> SELECT e.empno,e.ename,e.sal,d.dname,d.deptno FROM t_employee e RIGHT OUTER JOIN t_dept d ON e.deptno = d.deptno;
+----------+----------+--------+-------------+-----------+--+
| e.empno | e.ename | e.sal | d.dname | d.deptno |
+----------+----------+--------+-------------+-----------+--+
| 7782 | CLARK | 2450 | ACCOUNTING | 10 |
| 7839 | KING | 5000 | ACCOUNTING | 10 |
| 7934 | MILLER | 1300 | ACCOUNTING | 10 |
| 7369 | SMITH | 800 | RESEARCH | 20 |
| 7566 | JONES | 2975 | RESEARCH | 20 |
| 7788 | SCOTT | 1500 | RESEARCH | 20 |
| 7876 | ADAMS | 1100 | RESEARCH | 20 |
| 7902 | FORD | 3000 | RESEARCH | 20 |
| 7499 | ALLEN | 1600 | SALES | 30 |
| 7521 | WARD | 1250 | SALES | 30 |
| 7654 | MARTIN | 1250 | SALES | 30 |
| 7698 | BLAKE | 2850 | SALES | 30 |
| 7844 | TURNER | 1500 | SALES | 30 |
| 7900 | JAMES | 950 | SALES | 30 |
| NULL | NULL | NULL | OPERATIONS | 40 |
+----------+----------+--------+-------------+-----------+--+
15 rows selected (11.063 seconds)
0: jdbc:hive2://CentOS:10000> SELECT e.empno,e.ename,e.sal,d.dname,d.deptno FROM t_employee e FULL OUTER JOIN t_dept d ON e.deptno = d.deptno;
+----------+----------+--------+-------------+-----------+--+
| e.empno | e.ename | e.sal | d.dname | d.deptno |
+----------+----------+--------+-------------+-----------+--+
| 7934 | MILLER | 1300 | ACCOUNTING | 10 |
| 7839 | KING | 5000 | ACCOUNTING | 10 |
| 7782 | CLARK | 2450 | ACCOUNTING | 10 |
| 7876 | ADAMS | 1100 | RESEARCH | 20 |
| 7788 | SCOTT | 1500 | RESEARCH | 20 |
| 7369 | SMITH | 800 | RESEARCH | 20 |
| 7566 | JONES | 2975 | RESEARCH | 20 |
| 7902 | FORD | 3000 | RESEARCH | 20 |
| 7844 | TURNER | 1500 | SALES | 30 |
| 7499 | ALLEN | 1600 | SALES | 30 |
| 7698 | BLAKE | 2850 | SALES | 30 |
| 7654 | MARTIN | 1250 | SALES | 30 |
| 7521 | WARD | 1250 | SALES | 30 |
| 7900 | JAMES | 950 | SALES | 30 |
| NULL | NULL | NULL | OPERATIONS | 40 |
+----------+----------+--------+-------------+-----------+--+
15 rows selected (24.703 seconds)
12、LEFT SEMI JOIN
LEFT SEMI JOIN (左半连接)是 IN/EXISTS 子查询的一种更高效的实现。
- JOIN 子句中右边的表只能在 ON 子句中设置过滤条件;
- 查询结果只包含左边表的数据,所以只能SELECT左表中的列。
0: jdbc:hive2://CentOS:10000> SELECT e.empno,e.ename,d.dname FROM t_employee e LEFT SEMI JOIN t_dept d ON e.deptno = d.deptno AND d.loc="NEW YORK";
+----------+----------+-----------+--+
| e.empno | e.ename | e.deptno |
+----------+----------+-----------+--+
| 7782 | CLARK | 10 |
| 7839 | KING | 10 |
| 7934 | MILLER | 10 |
+----------+----------+-----------+--+
3 rows selected (10.119 seconds)
JOIN优化
- STREAMTABLE
在多表进行join的时候,如果每个ON子句都使用到共同的列,此时Hive会进行优化,将多表JOIN在同一个map / reduce作业上进行。同时假定查询的最后一个表是最大的一个表,在对每行记录进行JOIN操作时,它将尝试将其他的表缓存起来,然后扫描最后那个表进行计算。因此用户需要保证查询的表的大小从左到右是依次增加的。
SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key) JOIN c ON (c.key = b.key)
然而用户并非需要总是把最大的表放在查询语句的最后面,Hive提供了/*+ STREAMTABLE() */
标志,使用该标识来指出大表,能避免数据表过大导致占用内存过多而产生的问题。示例如下:
0: jdbc:hive2://CentOS:10000> SELECT /*+ STREAMTABLE(e) */ e.empno,e.ename,d.dname,d.deptno FROM t_employee e JOIN t_dept d ON e.deptno = d.deptno WHERE job='CLERK';
+----------+----------+-------------+-----------+--+
| e.empno | e.ename | d.dname | d.deptno |
+----------+----------+-------------+-----------+--+
| 7369 | SMITH | RESEARCH | 20 |
| 7876 | ADAMS | RESEARCH | 20 |
| 7900 | JAMES | SALES | 30 |
| 7934 | MILLER | ACCOUNTING | 10 |
+----------+----------+-------------+-----------+--+
4 rows selected (11.645 seconds)
- MAPJOIN
如果在进行join操作时,有一个表很小,则可以将join操作调整到map阶段执行。这就是典型的极大表和极小表关联问题。有两种解决方式:1.增加**/*+ MAPJOIN(b) */标示;2.设置参数hive.optimize.bucketmapjoin = true**,在
0: jdbc:hive2://CentOS:10000> SELECT /*+ MAPJOIN(d) */ e.empno, e.ename,d.dname FROM t_employee e JOIN t_dept d ON d.deptno = e.deptno;
+----------+----------+-------------+--+
| e.empno | e.ename | d.dname |
+----------+----------+-------------+--+
| 7369 | SMITH | RESEARCH |
| 7499 | ALLEN | SALES |
| 7521 | WARD | SALES |
| 7566 | JONES | RESEARCH |
| 7654 | MARTIN | SALES |
| 7698 | BLAKE | SALES |
| 7782 | CLARK | ACCOUNTING |
| 7788 | SCOTT | RESEARCH |
| 7839 | KING | ACCOUNTING |
| 7844 | TURNER | SALES |
| 7876 | ADAMS | RESEARCH |
| 7900 | JAMES | SALES |
| 7902 | FORD | RESEARCH |
| 7934 | MILLER | ACCOUNTING |
+----------+----------+-------------+--+
14 rows selected (11.416 seconds)
开窗函数
0: jdbc:hive2://CentOS:10000> select e.empno ,e.ename,e.sal,e.deptno,rank() over(partition by e.deptno order by e.sal) as rank from t_employee e;
+----------+----------+--------+-----------+-------+--+
| e.empno | e.ename | e.sal | e.deptno | rank |
+----------+----------+--------+-----------+-------+--+
| 7839 | KING | 5000 | 10 | 1 |
| 7782 | CLARK | 2450 | 10 | 2 |
| 7934 | MILLER | 1300 | 10 | 3 |
| 7902 | FORD | 3000 | 20 | 1 |
| 7566 | JONES | 2975 | 20 | 2 |
| 7788 | SCOTT | 1500 | 20 | 3 |
| 7876 | ADAMS | 1100 | 20 | 4 |
| 7369 | SMITH | 800 | 20 | 5 |
| 7698 | BLAKE | 2850 | 30 | 1 |
| 7499 | ALLEN | 1600 | 30 | 2 |
| 7844 | TURNER | 1500 | 30 | 3 |
| 7654 | MARTIN | 1250 | 30 | 4 |
| 7521 | WARD | 1250 | 30 | 4 |
| 7900 | JAMES | 950 | 30 | 6 |
+----------+----------+--------+-----------+-------+--+
0: jdbc:hive2://CentOS:10000> select e.empno ,e.ename,e.sal,e.deptno,dense_rank() over(partition by e.deptno order by e.sal desc) as rank from t_employee e;
+----------+----------+--------+-----------+-------+--+
| e.empno | e.ename | e.sal | e.deptno | rank |
+----------+----------+--------+-----------+-------+--+
| 7839 | KING | 5000 | 10 | 1 |
| 7782 | CLARK | 2450 | 10 | 2 |
| 7934 | MILLER | 1300 | 10 | 3 |
| 7902 | FORD | 3000 | 20 | 1 |
| 7566 | JONES | 2975 | 20 | 2 |
| 7788 | SCOTT | 1500 | 20 | 3 |
| 7876 | ADAMS | 1100 | 20 | 4 |
| 7369 | SMITH | 800 | 20 | 5 |
| 7698 | BLAKE | 2850 | 30 | 1 |
| 7499 | ALLEN | 1600 | 30 | 2 |
| 7844 | TURNER | 1500 | 30 | 3 |
| 7654 | MARTIN | 1250 | 30 | 4 |
| 7521 | WARD | 1250 | 30 | 4 |
| 7900 | JAMES | 950 | 30 | 5 |
+----------+----------+--------+-----------+-------+--+
14 rows selected (24.262 seconds)
Cube分析
0: jdbc:hive2://CentOS:10000> select e.deptno,e.job,avg(e.sal) avg,max(e.sal) max,min(e.sal) min from t_employee e group by e.deptno,e.job with cube;
+-----------+------------+--------------+-------+-------+--+
| e.deptno | e.job | avg | max | min |
+-----------+------------+--------------+-------+-------+--+
| NULL | ANALYST | 2250 | 3000 | 1500 |
| 10 | CLERK | 1300 | 1300 | 1300 |
| 20 | CLERK | 950 | 1100 | 800 |
| 30 | CLERK | 950 | 950 | 950 |
| 20 | ANALYST | 2250 | 3000 | 1500 |
| NULL | PRESIDENT | 5000 | 5000 | 5000 |
| 10 | PRESIDENT | 5000 | 5000 | 5000 |
| NULL | SALESMAN | 1400 | 1600 | 1250 |
| NULL | MANAGER | 2758.333333 | 2975 | 2450 |
| 30 | SALESMAN | 1400 | 1600 | 1250 |
| 10 | MANAGER | 2450 | 2450 | 2450 |
| 20 | MANAGER | 2975 | 2975 | 2975 |
| 30 | MANAGER | 2850 | 2850 | 2850 |
| NULL | NULL | 1966.071429 | 5000 | 800 |
| NULL | CLERK | 1037.5 | 1300 | 800 |
| 10 | NULL | 2916.666667 | 5000 | 1300 |
| 20 | NULL | 1875 | 3000 | 800 |
| 30 | NULL | 1566.666667 | 2850 | 950 |
+-----------+------------+--------------+-------+-------+--+
18 rows selected (25.037 seconds)
行转列
1,语文,100
1,数学,100
1,英语,100
2,数学,79
2,语文,80
2,英语,100
CREATE TABLE t_student(
id INT,
course STRING,
score double)
row format delimited
fields terminated by ','
collection items terminated by '|'
map keys terminated by '>'
lines terminated by '\n'
stored as textfile;
0: jdbc:hive2://CentOS:10000> select * from t_student;
+---------------+-------------------+------------------+--+
| t_student.id | t_student.course | t_student.score |
+---------------+-------------------+------------------+--+
| 1 | 语文 | 100.0 |
| 1 | 数学 | 100.0 |
| 1 | 英语 | 100.0 |
| 2 | 数学 | 79.0 |
| 2 | 语文 | 80.0 |
| 2 | 英语 | 100.0 |
+---------------+-------------------+------------------+--+
6 rows selected (0.05 seconds)
0: jdbc:hive2://CentOS:10000> select id,max(case course when '语文' then score else 0 end) as chinese,max(case course when '数学' then score else 0 end ) as math,max(case course when '英语' then score else 0 end ) as english from t_student group by id ;
+-----+----------+--------+----------+--+
| id | chinese | math | english |
+-----+----------+--------+----------+--+
| 1 | 100.0 | 100.0 | 100.0 |
| 2 | 80.0 | 79.0 | 100.0 |
+-----+----------+--------+----------+--+
2 rows selected (25.617 seconds)
SELECT id,concat_ws(’,’, collect_set(concat(course, ‘:’, score))) 成绩 FROM t_student GROUP BY id
Hive数据倾斜
数据倾斜是进行大数据计算时最经常遇到的问题之一。当我们在执行HiveQL或者运行MapReduce作业时候,如果遇到一直卡在map100%,reduce99%一般就是遇到了数据倾斜的问题。数据倾斜其实是进行分布式计算的时候,某些节点的计算能力比较强或者需要计算的数据比较少,早早执行完了,某些节点计算的能力较差或者由于此节点需要计算的数据比较多,导致出现其他节点的reduce阶段任务执行完成,但是这种节点的数据处理任务还没有执行完成。
group by,我使用Hive对数据做一些类型统计的时候遇到过某种类型的数据量特别多,而其他类型数据的数据量特别少。当按照类型进行group by的时候,会将相同的group by字段的reduce任务需要的数据拉取到同一个节点进行聚合,而当其中每一组的数据量过大时,会出现其他组的计算已经完成而这里还没计算完成,其他节点的一直等待这个节点的任务执行完成,所以会看到一直map 100% reduce 99%的情况。
解决方法:
set hive.map.aggr=true
set hive.groupby.skewindata=true
原理:
hive.map.aggr=true 这个配置项代表是否在map端进行聚合hive.groupby.skwindata=true 当选项设定为 true,生成的查询计划会有两个 MR Job。第一个 MR Job 中,Map 的输出结果集合会随机分布到 Reduce 中,每个 Reduce 做部分聚合操作,并输出结果,这样处理的结果是相同的 Group By Key 有可能被分发到不同的 Reduce 中,从而达到负载均衡的目的;第二个 MR Job 再根据预处理的数据结果按照 Group By Key 分布到 Reduce 中(这个过程可以保证相同的 Group By Key 被分布到同一个 Reduce 中),最后完成最终的聚合操作。
Hive On Hbase
create external table t_employee(
empno INT,
ename STRING,
job STRING,
mgr INT,
hiredate TIMESTAMP,
sal DECIMAL(7,2),
comm DECIMAL(7,2),
deptno INT)
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES("hbase.columns.mapping" = ":key,cf1:name,cf1:job,cf1:mgr,cf1:hiredate,cf1:sal,cf1:comm,cf1:deptno")
TBLPROPERTIES("hbase.table.name" = "baizhi:t_employee");
需要替换hive-hbase-handler-1.2.2.jar