1、 Explain 查看执行计划

在 clickhouse 20.6 版本之前要查看 SQL 语句的执行计划需要设置日志级别为 trace 才能可以看到, 并且只能真正执行 sql,在执行日志里面查看。 在 20.6 版本引入了原生的执行计划的语法。在 20.6.3 版本成为正式版本的功能。

1.1 基本语法

EXPLAIN [AST | SYNTAX | PLAN | PIPELINE] [setting = value, ...] SELECT ... [FORMAT ...]

➢ PLAN: 用于查看执行计划,默认值。
◼ header 打印计划中各个步骤的 head 说明,默认关闭,默认值 0;
◼ description 打印计划中各个步骤的描述,默认开启,默认值 1;
◼ actions 打印计划中各个步骤的详细信息,默认关闭,默认值 0。
➢ AST : 用于查看语法树;
➢ SYNTAX: 用于优化语法;
➢ PIPELINE: 用于查看 PIPELINE 计划。
◼ header 打印计划中各个步骤的 head 说明,默认关闭;
◼ graph 用 DOT 图形语言描述管道图,默认关闭,需要查看相关的图形需要配合graphviz 查看;
◼ actions 如果开启了 graph,紧凑打印打,默认开启。

注: PLAN 和 PIPELINE 还可以进行额外的显示设置,如上参数所示。

1.2 案例实操

新版本使用 EXPLAIN

可以再安装一个 20.6 以上版本,或者直接在官网的在线 demo,选择高版本进行测试。
官网在线测试链接:


简单查询

explain plan select arrayJoin([1,2,3,null,null]);

复杂 SQL 的执行计划

explain select database,table,count(1) cnt from system.parts where database in ('datasets','system') group by database,table order by database,cnt desc limit 2 by database;

打开全部的参数的执行计划

EXPLAIN header=1, actions=1,description=1 SELECT number from system.numbers limit 10;

2) AST 语法树

EXPLAIN AST SELECT number from system.numbers limit 10;

3) SYNTAX 语法优化
//先做一次查询

SELECT number = 1 ? 'hello' : (number = 2 ? 'world' : 'atguigu') FROM numbers(10);

//查看语法优化

EXPLAIN SYNTAX SELECT number = 1 ? 'hello' : (number = 2 ? 'world' : 'tlzs') FROM numbers(10);

//开启三元运算符优化

SET optimize_if_chain_to_multiif = 1;

//再次查看语法优化

EXPLAIN SYNTAX SELECT number = 1 ? 'hello' : (number = 2 ? 'world' :'tlzs') FROM numbers(10);

//返回优化后的语句

SELECT multiIf(number = 1, 'hello', number = 2, 'world', 'tlzs') FROM numbers(10);

4)查看 PIPELINE

EXPLAIN PIPELINE SELECT sum(number) FROM numbers_mt(100000) GROUP BY number % 20;

//打开其他参数

EXPLAIN PIPELINE header=1,graph=1 SELECT sum(number) FROM numbers_mt(10000) GROUP BY number%20;

2、 建表优化

2.1 数据类型

2.1.1 时间字段的类型

建表时能用数值型或日期时间型表示的字段就不要用字符串,全 String 类型在以 Hive为中心的数仓建设中常见,但 ClickHouse 环境不应受此影响。
虽然 ClickHouse 底层将 DateTime 存储为时间戳 Long 类型,但不建议存储 Long 类型,因为DateTime 不需要经过函数转换处理,执行效率高、可读性好。

create table t_type(
id UInt32,
sku_id String,
total_amount Decimal(16,2) ,
create_time Int32
) engine =ReplacingMergeTree(create_time)
partition by toYYYYMMDD(toDate(create_time))
primary key (id)
order by (id, sku_id);
create table t_type(
id UInt32,
sku_id String,
total_amount Decimal(16,2) ,
create_time DateTime
) engine =ReplacingMergeTree(create_time)
partition by toYYYYMMDD(create_time)
primary key (id)
order by (id, sku_id);

presto和clickhouse区别 presto clickhouse_clickhouse

 2.1.2 空值存储类型

官方已经指出 Nullable 类型几乎总是会拖累性能,因为存储 Nullable 列时需要创建一个额外的文件来存储 NULL 的标记,并且 Nullable 列无法被索引。因此除非极特殊情况,应直接使用字段默认值表示空,或者自行指定一个在业务中无意义的值(例如用-1 表示没有商品ID)。

CREATE TABLE t_null(x Int8, y Nullable(Int8)) ENGINE TinyLog;
INSERT INTO t_null VALUES (1, NULL), (2, 3);
SELECT x + y FROM t_null;

查看存储的文件: (没有权限就用 root 用户)

presto和clickhouse区别 presto clickhouse_presto和clickhouse区别_02

官网说明:

https://clickhouse.com/docs/zh/sql-reference/data-types/nullable/

presto和clickhouse区别 presto clickhouse_字段_03

https://clickhouse.com/docs/zh/sql-reference/data-types/nullable/

2.2 分区和索引

分区粒度根据业务特点决定,不宜过粗或过细。一般选择按天分区,也可以指定为 Tuple(),以单表一亿数据为例,分区大小控制在 10-30 个为最佳。
必须指定索引列, ClickHouse 中的索引列即排序列,通过 order by 指定,一般在查询条件中经常被用来充当筛选条件的属性被纳入进来;可以是单一维度,也可以是组合维度的索引;通常需要满足高级列在前、查询频率大的在前原则;还有基数特别大的不适合做索引列,
如用户表的 userid 字段;通常筛选后的数据满足在百万以内为最佳。
比如官方案例的 hits_v1 表:

……
PARTITION BY toYYYYMM(EventDate)
ORDER BY (CounterID, EventDate, intHash32(UserID))
……

visits_v1 表:

……
PARTITION BY toYYYYMM(StartDate)
ORDER BY (CounterID, StartDate, intHash32(UserID), VisitID)
……

2.3 表参数

Index_granularity 是用来控制索引粒度的, 默认是 8192, 如非必须不建议调整。
如果表中不是必须保留全量历史数据,建议指定 TTL(生存时间值),可以免去手动过期历史数据的麻烦, TTL 也可以通过 alter table 语句随时修改。(参考基础文档 4.4.5 数据 TTL)

2.4 写入和删除优化

( 1) 尽量不要执行单条或小批量删除和插入操作,这样会产生小分区文件,给后台Merge 任务带来巨大压力
(2) 不要一次写入太多分区,或数据写入太快,数据写入太快会导致 Merge 速度跟不上而报错,一般建议每秒钟发起 2-3 次写入操作,每次操作写入 2w~5w 条数据(依服务器性能而定)

 写入过快报错, 报错信息:
1. Code: 252, e.displayText() = DB::Exception: Too many parts(304).Merges are processing significantly slower than inserts
2. Code: 241, e.displayText() = DB::Exception: Memory limit (for query)exceeded:would use 9.37 GiB (attempt to allocate chunk of 301989888 bytes), maximum: 9.31 GiB

处理方式:
“ Too many parts 处理 ” :使用 WAL 预写日志,提高写入性能。
in_memory_parts_enable_wal 默认为 true
在服务器内存充裕的情况下增加内存配额,一般通过 max_memory_usage 来实现在服务器内存不充裕的情况下,建议将超出部分内容分配到系统硬盘上,但会降低执行速度,一般通过 max_bytes_before_external_group_by、 max_bytes_before_external_sort 参数来实现。

2.5 常见配置

配置项主要在 config.xml 或 users.xml 中, 基本上都在 users.xml 里
➢ config.xml 的配置项
服务器设置 | ClickHouse文档服务器配置 builtin_dictionaries_reload_interval 重新加载内置字典的间隔时间(以秒为单位)。 ClickHouse每x秒重新加载内置字典。 这使得编辑字典 “on the fly”,而无需重新启动服务器。https://clickhouse.com/docs/zh/operations/server-configuration-parameters/settings/➢ users.xml 的配置项

设置 | ClickHouse文档设置 分布_产品_模式 改变的行为 分布式子查询. ClickHouse applies this setting when the query contains the product of distributed tables, i.ehttps://clickhouse.com/docs/zh/operations/settings/settings/

2.5.1 CPU 资源

配置

描述

background_pool_size

后台线程池的大小, merge 线程就是在该线程池中执行,该线程池不仅仅是给 merge 线程用的,默认值 16,允许的前提下建议改成 cpu 个数的 2 倍(线程数) 。

background_schedule_pool_size

执行后台任务( 复制表、 Kafka 流、DNS 缓存更新) 的线程数。 默认 128, 建议改成 cpu 个数的 2 倍(线程数)。

background_distributed_schedule_

pool_size

设置为分布式发送执行后台任务的线程数,默认 16, 建议改成 cpu个数的 2 倍(线程数)

max_concurrent_queries

最大并发处理的请求数(包含select,insert 等),默认值 100,推荐 150(不够再加)~300

max_threads

设置单个查询所能使用的最大 cpu 个数,默认是 cpu 核数

2.5.2 内存资源

配置

描述

max_memory_usage

此参数在 users.xml 中,表示单次 Query 占用内存最大值,该值可以设置的比较大,这样可以提升集群查询的上限。

保留一点给 OS,比如 128G 内存的机器,设置为 100GB

max_bytes_before_external_group_

by

一般按照 max_memory_usage 的一半设置内存,当 group 使用内存超过阈值后会刷新到磁盘进行。因为 clickhouse 聚合分两个阶段:查询并及建立中间数据、合并中间数据, 结合上一项,建议 50GB

max_bytes_before_external_sort

当 order by 已使用 max_bytes_before_external_sort 内存就进行溢写磁盘(基于磁盘排序),如果不设置该值,那么当内存不够时直接
抛错,设置了该值 order by 可以正常完成,但是速度相对存内存来说肯定要慢点(实测慢的非常多,无法接受)

max_table_size_to_drop

此参数在 config.xml 中,应用于需要删除表或分区的情况,默认是50GB,意思是如果删除 50GB 以上的分区表会失败。 建议修改为 0,这样不管多大的分区表都可以删除。

2.5.3 存储

ClickHouse 不支持设置多数据目录,为了提升数据 io 性能,可以挂载虚拟券组,一个券组绑定多块物理磁盘提升读写性能,多数据查询场景 SSD 会比普通机械硬盘快 2-3 倍。

3、 ClickHouse 语法优化规则

ClickHouse 的 SQL 优化规则是基于 RBO(Rule Based Optimization),下面是一些优化规则

3.1 准备测试用表

1) 上传官方的数据集

Yandex.Metrica Data | ClickHouse文档

presto和clickhouse区别 presto clickhouse_字段_03

https://clickhouse.com/docs/zh/getting-started/example-datasets/metrica/

Anonymized Yandex.Metrica Data

数据集由两个表组成,包含关于Yandex.Metrica的hits(hits_v1)和visit(visits_v1)的匿名数据。你可以阅读更多关于Yandex的信息。在ClickHouse历史的Metrica部分。

数据集由两个表组成,他们中的任何一个都可以下载作为一个压缩tsv.xz的文件或准备的分区。除此之外,一个扩展版的hits表包含1亿行TSV在https:///hits/tsv/hits_100m_obfuscated_v1.tsv.xz,准备分区在https:///hits/partitions/hits_100m_obfuscated_v1.tar.xz。

从准备好的分区获取表

下载和导入hits表:

curl -O https:///hits/partitions/hits_v1.tar
tar xvf hits_v1.tar -C /var/lib/clickhouse # path to ClickHouse data directory

下载和导入visits表:

curl -O https:///visits/partitions/visits_v1.tar
tar xvf visits_v1.tar -C /var/lib/clickhouse # path to ClickHouse data directory
chown -R clickhouse:clickhouse /var/lib/clickhouse/data/datasets
chown -R clickhouse:clickhouse /var/lib/clickhouse/metadata/datasets


2) 重启 clickhouse-server


clickhouse restart


3) 执行查询


select count() from hits_v1;



select count() from visits_v1;



注意:官方的 tar 包,包含了建库、建表语句、数据内容,这种方式不需要手动建库、建表,最方便。
hits_v1 表有 130 多个字段, 880 多万条数据
visits_v1 表有 180 多个字段, 160 多万条数据

3.2 COUNT 优化

在调用 count 函数时, 如果使用的是 count() 或者 count(*), 且没有 where 条件, 则会直接使用 system.tables 的 total_rows, 例如: 

EXPLAIN SELECT count()FROM datasets.hits_v1;
┌─explain──────────────────────────────────────────────┐
│ Expression ((Projection + Before ORDER BY))          │
│   MergingAggregated                                  │
│     ReadFromPreparedSource (Optimized trivial count) │
└──────────────────────────────────────────────────────┘

 注意 Optimized trivial count ,这是对 count 的优化。
如果 count 具体的列字段,则不会使用此项优化:

EXPLAIN SELECT count(CounterID) FROM datasets.hits_v1;
┌─explain───────────────────────────────────────────────────────────────────────┐
│ Expression ((Projection + Before ORDER BY))                                   │
│   Aggregating                                                                 │
│     Expression (Before GROUP BY)                                              │
│       SettingQuotaAndLimits (Set limits and quota after reading from storage) │
│         ReadFromMergeTree                                                     │
└───────────────────────────────────────────────────────────────────────────────┘

3.3 消除子查询重复字段

下面语句子查询中有两个重复的 id 字段, 会被去重:

EXPLAIN SYNTAX SELECT
a.UserID,
b.VisitID,
a.URL,
b.UserID
FROM
hits_v1 AS a
LEFT JOIN (
SELECT
UserID,
UserID as HaHa,
VisitID
FROM visits_v1) AS b
USING (UserID)
limit 3;
┌─explain───────────────┐
│ SELECT                │
│     UserID,           │
│     VisitID,          │
│     URL,              │
│     b.UserID          │
│ FROM hits_v1 AS a     │
│ ALL LEFT JOIN         │
│ (                     │
│     SELECT            │
│         UserID,       │
│         VisitID       │
│     FROM visits_v1    │
│ ) AS b USING (UserID) │
│ LIMIT 3               │
└───────────────────────┘

3.4 谓词下推

当 group by 有 having 子句,但是没有 with cube、 with rollup 或者 with totals 修饰的时候, having 过滤会下推到 where 提前过滤。例如下面的查询, HAVING name 变成了 WHERE name,在 group by 之前过滤:

EXPLAIN SYNTAX SELECT UserID FROM hits_v1 GROUP BY UserID HAVING UserID =
'8585742290196126178';
┌─explain──────────────────────────────┐
│ SELECT UserID                        │
│ FROM hits_v1                         │
│ WHERE UserID = '8585742290196126178' │
│ GROUP BY UserID                      │
└──────────────────────────────────────┘

子查询也支持谓词下推:

EXPLAIN SYNTAX
SELECT *
FROM
(
SELECT UserID
FROM visits_v1
)
WHERE UserID = '8585742290196126178';

//返回优化后的语句

┌─explain──────────────────────────────────┐
│ SELECT UserID                            │
│ FROM                                     │
│ (                                        │
│     SELECT UserID                        │
│     FROM visits_v1                       │
│     WHERE UserID = '8585742290196126178' │
│ )                                        │
│ WHERE UserID = '8585742290196126178'     │
└──────────────────────────────────────────┘

再来一个复杂例子:

EXPLAIN SYNTAX
SELECT * FROM (
SELECT
*
FROM
(
SELECT
UserID
FROM visits_v1)
UNION ALL
SELECT
*
FROM
(
SELECT
UserID
FROM visits_v1)
)
WHERE UserID = '8585742290196126178';

//返回优化后的语句 

┌─explain──────────────────────────────────────┐
│ SELECT UserID                                │
│ FROM                                         │
│ (                                            │
│     SELECT UserID                            │
│     FROM                                     │
│     (                                        │
│         SELECT UserID                        │
│         FROM visits_v1                       │
│         WHERE UserID = '8585742290196126178' │
│     )                                        │
│     WHERE UserID = '8585742290196126178'     │
│     UNION ALL                                │
│     SELECT UserID                            │
│     FROM                                     │
│     (                                        │
│         SELECT UserID                        │
│         FROM visits_v1                       │
│         WHERE UserID = '8585742290196126178' │
│     )                                        │
│     WHERE UserID = '8585742290196126178'     │
│ )                                            │
│ WHERE UserID = '8585742290196126178'         │
└──────────────────────────────────────────────┘

3.5 聚合计算外推

聚合函数内的计算, 会外推, 例如:

EXPLAIN SYNTAX
SELECT sum(UserID * 2)
FROM visits_v1;

//返回优化后的语句

┌─explain────────────────┐
│ SELECT sum(UserID) * 2 │
│ FROM visits_v1         │
└────────────────────────┘

3.6 聚合函数消除

如果对聚合键,也就是 group by key 使用 min、 max、 any 聚合函数,则将函数消除,例如:

EXPLAIN SYNTAX
SELECT
sum(UserID * 2),
max(VisitID),
max(UserID)
FROM visits_v1
GROUP BY UserID;

//返回优化后的语句

┌─explain──────────────┐
│ SELECT               │
│     sum(UserID) * 2, │
│     max(VisitID),    │
│     UserID           │
│ FROM visits_v1       │
│ GROUP BY UserID      │
└──────────────────────┘

3.7 删除重复的 order by key

例如下面的语句,重复的聚合键 id 字段会被去重:

EXPLAIN SYNTAX
SELECT *
FROM visits_v1
ORDER BY
UserID ASC,
UserID ASC,
VisitID ASC,
VisitID ASC;

//返回优化后的语句:

select
……
FROM visits_v1
ORDER BY
UserID ASC,
VisitID ASC;

3.8 删除重复的 limit by key

例如下面的语句, 重复声明的 name 字段会被去重:

EXPLAIN SYNTAX
SELECT *
FROM visits_v1
LIMIT 3 BY
VisitID,
VisitID
LIMIT 10;

//返回优化后的语句:

select
……
FROM visits_v1
LIMIT 3 BY VisitID
LIMIT 10;

3.9 删除重复的 USING Key

例如下面的语句,重复的关联键 id 字段会被去重:

EXPLAIN SYNTAX
SELECT
a.UserID,
a.UserID,
b.VisitID,
a.URL,
b.UserID
FROM hits_v1 AS a
LEFT JOIN visits_v1 AS b USING (UserID, UserID);

//返回优化后的语句:

SELECT
UserID,
UserID,
VisitID,
URL,
b.UserID
FROM hits_v1 AS a
ALL LEFT JOIN visits_v1 AS b USING (UserID);

3.10 标量替换

如果子查询只返回一行数据, 在被引用的时候用标量替换, 例如下面语句中的 total_disk_usage 字段:

EXPLAIN SYNTAX
WITH
(
SELECT sum(bytes)
FROM system.parts
WHERE active
) AS total_disk_usage
SELECT
(sum(bytes) / total_disk_usage) * 100 AS table_disk_usage,
table
FROM system.parts
GROUP BY table
ORDER BY table_disk_usage DESC
LIMIT 10;

//返回优化后的语句:

┌─explain─────────────────────────────────────────────────────────────────────────┐
│ WITH identity(_CAST(0, 'Nullable(UInt64)')) AS total_disk_usage                 │
│ SELECT                                                                          │
│     (sum(bytes_on_disk AS bytes) / total_disk_usage) * 100 AS table_disk_usage, │
│     table                                                                       │
│ FROM system.parts                                                               │
│ GROUP BY table                                                                  │
│ ORDER BY table_disk_usage DESC                                                  │
│ LIMIT 10                                                                        │
└─────────────────────────────────────────────────────────────────────────────────┘

3.11 三元运算优化

如果开启了 optimize_if_chain_to_multiif 参数,三元运算符会被替换成 multiIf 函数,
例如:

EXPLAIN SYNTAX
SELECT number = 1 ? 'hello' : (number = 2 ? 'world' : 'atguigu')
FROM numbers(10)
settings optimize_if_chain_to_multiif = 1;

//返回优化后的语句:

┌─explain─────────────────────────────────────────────────────────────┐
│ SELECT multiIf(number = 1, 'hello', number = 2, 'world', 'atguigu') │
│ FROM numbers(10)                                                    │
│ SETTINGS optimize_if_chain_to_multiif = 1                           │
└─────────────────────────────────────────────────────────────────────┘

4、 查询优化

4.1 单表查询

4.1.1 Prewhere 替代 where

Prewhere 和 where 语句的作用相同, 用来过滤数据。不同之处在于 prewhere 只支持*MergeTree 族系列引擎的表,首先会读取指定的列数据,来判断数据过滤,等待数据过滤之后再读取 select 声明的列字段来补全其余属性。
当查询列明显多于筛选列时使用 Prewhere 可十倍提升查询性能, Prewhere 会自动优化
执行过滤阶段的数据读取方式,降低 io 操作。
在某些场合下, prewhere 语句比 where 语句处理的数据量更少性能更高。
#关闭 where 自动转 prewhere(默认情况下, where 条件会自动优化成 prewhere)

set optimize_move_to_prewhere=0;

# 使用 where

select WatchID,
JavaEnable,
Title,
GoodEvent,
EventTime,
EventDate,
CounterID,
ClientIP,
ClientIP6,
RegionID,
UserID,
CounterClass,
OS,
UserAgent,
URL,
Referer,
URLDomain,
RefererDomain,
Refresh,
IsRobot,
RefererCategories,
URLCategories,
URLRegions,
RefererRegions,
ResolutionWidth,
ResolutionHeight,
ResolutionDepth,
FlashMajor,
FlashMinor,
FlashMinor2
from datasets.hits_v1 where UserID='3198390223272470366';

# 使用 prewhere 关键字

select WatchID,
JavaEnable,
Title,
GoodEvent,
EventTime,
EventDate,
CounterID,
ClientIP,
ClientIP6,
RegionID,
UserID,
CounterClass,
OS,
UserAgent,
URL,
Referer,
URLDomain,
RefererDomain,
Refresh,
IsRobot,
RefererCategories,
URLCategories,
URLRegions,
RefererRegions,
ResolutionWidth,
ResolutionHeight,
ResolutionDepth,
FlashMajor,
FlashMinor,
FlashMinor2
from datasets.hits_v1 prewhere UserID='3198390223272470366';

默认情况,我们肯定不会关闭 where 自动优化成 prewhere,但是某些场景即使开启优化,也不会自动转换成 prewhere,需要手动指定 prewhere:
⚫ 使用常量表达式
⚫ 使用默认值为 alias 类型的字段
⚫ 包含了 arrayJOIN, globalIn, globalNotIn 或者 indexHint 的查询
⚫ select 查询的列字段和 where 的谓词相同
⚫ 使用了主键字段

4.1.2 数据采样

通过采样运算可极大提升数据分析的性能

SELECT Title,count(*) AS PageViews
FROM hits_v1
SAMPLE 0.1 #代表采样 10%的数据,也可以是具体的条数
WHERE CounterID =57
GROUP BY Title
ORDER BY PageViews DESC LIMIT 1000;

采样修饰符只有在 MergeTree engine 表中才有效,且在创建表时需要指定采样策略。

4.1.3 列裁剪与分区裁剪

数据量太大时应避免使用 select * 操作,查询的性能会与查询的字段大小和数量成线性表换,字段越少,消耗的 io 资源越少,性能就会越高。

反例:
select * from datasets.hits_v1;
正例:
select WatchID,
JavaEnable,
Title,
GoodEvent,
EventTime,
EventDate,
CounterID,
ClientIP,
ClientIP6,
RegionID,
UserID
from datasets.hits_v1;

分区裁剪就是只读取需要的分区, 在过滤条件中指定。

select WatchID,
JavaEnable,
Title,
GoodEvent,
EventTime,
EventDate,
CounterID,
ClientIP,
ClientIP6,
RegionID,
UserID
from datasets.hits_v1
where EventDate='2014-03-23';

4.1.4 orderby 结合 where、 limit

千万以上数据集进行 order by 查询时需要搭配 where 条件和 limit 语句一起使用。

#正例:
SELECT UserID,Age
FROM hits_v1
WHERE CounterID=57
ORDER BY Age DESC LIMIT 1000;
#反例:
SELECT UserID,Age
FROM hits_v1
ORDER BY Age DESC;

4.1.5 避免构建虚拟列

如非必须, 不要在结果集上构建虚拟列,虚拟列非常消耗资源浪费性能,可以考虑在前端进行处理,或者在表中构造实际字段进行额外存储。
反例

SELECT Income,Age,Income/Age as IncRate FROM datasets.hits_v1;

正例:拿到 Income 和 Age 后, 考虑在前端进行处理,或者在表中构造实际字段进行额外存储

SELECT Income,Age FROM datasets.hits_v1;

4.1.6 uniqCombined 替代 distinct

性能可提升 10 倍以上, uniqCombined 底层采用类似 HyperLogLog 算法实现, 能接收 2%左右的数据误差, 可直接使用这种去重方式提升查询性能。 Count(distinct )会使用 uniqExact精确去重。
不建议在千万级不同数据上执行 distinct 去重查询,改为近似去重 uniqCombined
反例:

select count(distinct rand()) from hits_v1;

正例:

SELECT uniqCombined(rand()) from datasets.hits_v1;

4.1.7 其他注意事项
(1)查询熔断
为了避免因个别慢查询引起的服务雪崩的问题,除了可以为单个查询设置超时以外,还可以配置周期熔断,在一个查询周期内,如果用户频繁进行慢查询操作超出规定阈值后将无法继续进行查询操作。
(2)关闭虚拟内存
物理内存和虚拟内存的数据交换,会导致查询变慢,资源允许的情况下关闭虚拟内存。
(3)配置 join_use_nulls
为每一个账户添加 join_use_nulls 配置,左表中的一条记录在右表中不存在,右表的相应字段会返回该字段相应数据类型的默认值,而不是标准 SQL 中的 Null 值。
(4)批量写入时先排序
批量写入数据时,必须控制每个批次的数据中涉及到的分区的数量,在写入之前最好对需要导入的数据进行排序。无序的数据或者涉及的分区太多,会导致 ClickHouse 无法及时对新导入的数据进行合并,从而影响查询性能。
(5)关注 CPU
cpu 一般在 50%左右会出现查询波动,达到 70%会出现大范围的查询超时, cpu 是最关键的指标,要非常关注。

4.2 多表关联

4.2.1 准备表和数据

#创建小表

CREATE TABLE visits_v2
ENGINE = CollapsingMergeTree(Sign)
PARTITION BY toYYYYMM(StartDate)
ORDER BY (CounterID, StartDate, intHash32(UserID), VisitID)
SAMPLE BY intHash32(UserID)
SETTINGS index_granularity = 8192
as select * from visits_v1 limit 10000;

#创建 join 结果表:避免控制台疯狂打印数据

CREATE TABLE hits_v2
ENGINE = MergeTree()
PARTITION BY toYYYYMM(EventDate)
ORDER BY (CounterID, EventDate, intHash32(UserID))
SAMPLE BY intHash32(UserID)
SETTINGS index_granularity = 8192
as select * from hits_v1 where 1=0;

4.2.2 用 IN 代替 JOIN

当多表联查时, 查询的数据仅从其中一张表出时, 可考虑用 IN 操作而不是 JOIN

insert into hits_v2
select a.* from hits_v1 a where a. CounterID in (select CounterID from
visits_v1);

#反例:使用 join

insert into table hits_v2
select a.* from hits_v1 a left join visits_v1 b on a. CounterID=b.
CounterID;

4.2.3 大小表 JOIN

多表 join 时要满足小表在右的原则, 右表关联时被加载到内存中与左表进行比较,ClickHouse 中无论是 Left join 、 Right join 还是 Inner join 永远都是拿着右表中的每一条记录到左表中查找该记录是否存在, 所以右表必须是小表。
(1) 小表在右

insert into table hits_v2
select a.* from hits_v1 a left join visits_v2 b on a. CounterID=b.
CounterID;

(2) 大表在右

insert into table hits_v2
select a.* from visits_v2 b left join hits_v1 a on a. CounterID=b.
CounterID;

4.2.4 注意谓词下推(版本差异)

ClickHouse 在 join 查询时不会主动发起谓词下推的操作,需要每个子查询提前完成过滤操作,需要注意的是,是否执行谓词下推,对性能影响差别很大(新版本中已经不存在此问题,但是需要注意谓词的位置的不同依然有性能的差异)

Explain syntax
select a.* from hits_v1 a left join visits_v2 b on a. CounterID=b.
CounterID
having a.EventDate = '2014-03-17';
Explain syntax
select a.* from hits_v1 a left join visits_v2 b on a. CounterID=b.
CounterID
having b.StartDate = '2014-03-17';
insert into hits_v2
select a.* from hits_v1 a left join visits_v2 b on a. CounterID=b.
CounterID
where a.EventDate = '2014-03-17';
insert into hits_v2
select a.* from (
select * from
hits_v1
where EventDate = '2014-03-17'
) a left join visits_v2 b on a. CounterID=b. CounterID;

4.2.5 分布式表使用 GLOBAL

两张分布式表上的 IN 和 JOIN 之前必须加上 GLOBAL 关键字, 右表只会在接收查询请求的那个节点查询一次,并将其分发到其他节点上。如果不加 GLOBAL 关键字的话,每个节点都会单独发起一次对右表的查询,而右表又是分布式表,就导致右表一共会被查询 N²次(N是该分布式表的分片数量),这就是查询放大,会带来很大开销。

4.2.6 使用字典表

将一些需要关联分析的业务创建成字典表进行 join 操作,前提是字典表不宜太大,因为字典表会常驻内存

4.2.7 提前过滤

通过增加逻辑过滤可以减少数据扫描,达到提高执行速度及降低内存消耗的目的

5、 数据一致性(重点)

查询 CK 手册发现,即便对数据一致性支持最好的 Mergetree,也只是保证最终一致性:

presto和clickhouse区别 presto clickhouse_presto和clickhouse区别_05

我们在使用 ReplacingMergeTree、 SummingMergeTree 这类表引擎的时候,会出现短暂数据不一致的情况。
在某些对一致性非常敏感的场景,通常有以下几种解决方案。

5.1 准备测试表和数据

(1) 创建表
CREATE TABLE test_a(
user_id UInt64,
score String,
deleted UInt8 DEFAULT 0,
create_time DateTime DEFAULT toDateTime(0)
)ENGINE= ReplacingMergeTree(create_time)
ORDER BY user_id;

其中:
user_id 是数据去重更新的标识;
create_time 是版本号字段,每组数据中 create_time 最大的一行表示最新的数据;
deleted 是自定的一个标记位,比如 0 代表未删除, 1 代表删除数据。
(2) 写入 1000 万 测试数据

INSERT INTO TABLE test_a(user_id,score)
WITH(
SELECT ['A','B','C','D','E','F','G']
)AS dict
SELECT number AS user_id, dict[number%7+1] FROM numbers(10000000);

(3) 修改前 50 万 行数据,修改内容包括 name 字段和 create_time 版本号字段

INSERT INTO TABLE test_a(user_id,score,create_time)
WITH(
SELECT ['AA','BB','CC','DD','EE','FF','GG']
)AS dict
SELECT number AS user_id, dict[number%7+1], now() AS create_time FROM
numbers(500000);

(4)统计总数

SELECT COUNT() FROM test_a;

10500000
还未触发分区合并,所以还未去重。 

5.2 手动 OPTIMIZE

在写入数据后,立刻执行 OPTIMIZE 强制触发新写入分区的合并动作。

OPTIMIZE TABLE test_a FINAL;

语法: OPTIMIZE TABLE [db.]name [ON CLUSTER cluster] [PARTITION partition | PARTITION ID 'partition_id'] [FINAL] [DEDUPLICATE [BY expression]]

5.3 通过 Group by 去重

(1)执行去重的查询

SELECT
user_id ,
argMax(score, create_time) AS score,
argMax(deleted, create_time) AS deleted,
max(create_time) AS ctime
FROM test_a
GROUP BY user_id
HAVING deleted = 0;

函数说明:
◼ argMax(field1, field2):按照 field2 的最大值取 field1 的值。
当我们更新数据时,会写入一行新的数据,例如上面语句中, 通过查询最大的create_time 得到修改后的 score 字段值。
(2)创建视图,方便测试

CREATE VIEW view_test_a AS
SELECT
user_id ,
argMax(score, create_time) AS score,
argMax(deleted, create_time) AS deleted,
max(create_time) AS ctime
FROM test_a
GROUP BY user_id
HAVING deleted = 0;

(3)插入重复数据,再次查询
#再次插入一条数据

INSERT INTO TABLE test_a(user_id,score,create_time) VALUES(0,'AAAA',now())

#再次查询

SELECT *
FROM view_test_a
WHERE user_id = 0;

(4)删除数据测试
#再次插入一条标记为删除的数据

INSERT INTO TABLE test_a(user_id,score,deleted,create_time)
VALUES(0,'AAAA',1,now());

#再次查询,刚才那条数据看不到了

SELECT * FROM view_test_a
WHERE user_id = 0;

这行数据并没有被真正的删除,而是被过滤掉了。在一些合适的场景下,可以结合 表级别的 TTL 最终将物理数据删除。

5.4 通过 FINAL 查询

在查询语句后增加 FINAL 修饰符, 这样在查询的过程中将会执行 Merge 的特殊逻辑(例如数据去重, 预聚合等)。
但是这种方法在早期版本基本没有人使用,因为在增加 FINAL 之后,我们的查询将会变成一个单线程的执行过程,查询速度非常慢。
在 v20.5.2.7-stable 版本中, FINAL 查询支持多线程执行,并且可以通过 max_final_threads参数控制单个查询的线程数。 但是目前读取 part 部分的动作依然是串行的。
FINAL 查询最终的性能和很多因素相关,列字段的大小、分区的数量等等都会影响到最终的查询时间,所以还要结合实际场景取舍。

新版本测试

(1)普通语句查询

select * from visits_v1 WHERE StartDate = '2014-03-17' limit 100 settings
max_threads = 2;

查看执行计划:

explain pipeline select * from visits_v1 WHERE StartDate = '2014-03-17'
limit 100 settings max_threads = 2;
┌─explain─────────────────────────┐
│ (Expression)                    │
│ ExpressionTransform × 2         │
│   (SettingQuotaAndLimits)       │
│     (Limit)                     │
│     Limit 2 → 2                 │
│       (ReadFromMergeTree)       │
│       MergeTreeThread × 2 0 → 1 │
└─────────────────────────────────┘

 明显将由 2 个线程并行读取 part 查询。
(2) FINAL 查询

select * from visits_v1 final WHERE StartDate = '2014-03-17' limit 100
settings max_final_threads = 2;

查询速度没有普通的查询快,但是相比之前已经有了一些提升,查看 FINAL 查询的执行计划:

explain pipeline select * from visits_v1 final WHERE StartDate = '2014-03-17' limit 100 settings max_final_threads = 2;
┌─explain──────────────────────────────────┐
│ (Expression)                             │
│ ExpressionTransform × 2                  │
│   (Limit)                                │
│   Limit 2 → 2                            │
│     (Filter)                             │
│     FilterTransform × 2                  │
│       (SettingQuotaAndLimits)            │
│         (ReadFromMergeTree)              │
│         ExpressionTransform × 2          │
│           CollapsingSortedTransform × 2  │
│             Copy 1 → 2                   │
│               AddingSelector             │
│                 ExpressionTransform      │
│                   MergeTreeInOrder 0 → 1 │
└──────────────────────────────────────────┘

从 CollapsingSortedTransform 这一步开始已经是多线程执行, 但是读取 part 部分的动作还是串行。