😊 @ 作者: 一恍过去
目录
- 前言
- 1、 基本介绍
- 2、存在的问题
- 3、代码实现
- 整合SpringBoot使用
前言
雪花算法(SnowFlake)是一种用于生成唯一标识符(ID)的分布式算法。它由Twitter开发,用于在大规模分布式系统中生成全局唯一的ID。
SnowFlake算法的ID是一个64位的整数,由以下几个部分组成:
时间戳(Timestamp)
工作机器ID(Worker ID)
序列号(Sequence)
SnowFlake算法通过结合时间戳、工作机器ID和序列号,保证了生成的ID在分布式系统中的全局唯一性。由于ID中包含了时间戳,因此生成的ID是递增的,可以方便地按照时间排序。
在实际使用SnowFlake算法时,需要根据实际情况设置工作机器ID,以保证不同节点拥有不同的ID。此外,需要注意系统的时钟同步,以确保生成的时间戳准确无误。
SnowFlake算法是一种简单且高效的算法,适用于需要在分布式环境中生成全局唯一ID的场景,如分布式数据库、分布式锁、分布式消息队列等。
1、 基本介绍
- 最高位是符号位,始终为0,不可用。
- 41位的时间序列,精确到毫秒级,41位的长度可以使用69年。时间位还有一个很重要的作用是可以根据时间进行排序。
- 10位的机器标识,10位器标识符一般是5位IDC(数据中心)最大值为32个机房,+5位machine编号最大值为32台机器,所有开源标识1024个不同的机器。
- 12位的计数序列号,代表是同一个毫秒类产生不同的ID,区分同一个毫秒内产生的ID,12位的计数序列号支持每个节点每毫秒产生4096个ID序号,也就是说QPS可以到 409.6 w/s。
2、存在的问题
- 时间回拨问题:由于机器的时间是动态的调整的,有可能会出现时间跑到之前几毫秒,如果这个时候获取到了这种时间,则会出现数据重复
- 机器id分配及回收问题:目前机器id需要每台机器不一样,这样的方式分配需要有方案进行处理,同时也要考虑,如果该机器宕机了,对应的workerId分配后的回收问题
- 机器id上限:机器id是固定的bit,那么也就是对应的机器个数是有上限的,在有些业务场景下,需要所有机器共享同一个业务空间,那么10bit表示的1024台机器是不够的。
3、代码实现
import java.lang.management.ManagementFactory;
import java.net.InetAddress;
import java.net.NetworkInterface;
/**
* 核心代码为其IdWorker这个类实现,其原理结构如下,我分别用一个0表示一位,用—分割开部分的作用:
* 1||0---0000000000 0000000000 0000000000 0000000000 0 --- 00000 ---00000 ---000000000000
* 在上面的字符串中,第一位为未使用(实际上也可作为long的符号位),接下来的41位为毫秒级时间,
* 然后5位datacenter标识位,5位机器ID(并不算标识符,实际是为线程标识),
* 然后12位该毫秒内的当前毫秒内的计数,加起来刚好64位,为一个Long型。
* 这样的好处是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由datacenter和机器ID作区分),
* 并且效率较高,经测试,snowflake每秒能够产生26万ID左右,完全满足需要。
* <p>
* 64位ID (42(毫秒)+5(机器ID)+5(业务编码)+12(重复累加))
*
* @author Polim
*/
public class IdWorker {
// 时间起始标记点,作为基准,一般取系统的最近时间戳(一旦确定不能变动)
private final static long twepoch = 1288834974657L;
// 机器标识位数
private final static long workerIdBits = 5L;
// 数据中心标识位数
private final static long datacenterIdBits = 5L;
// 机器ID最大值
private final static long maxWorkerId = -1L ^ (-1L << workerIdBits);
// 数据中心ID最大值
private final static long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
// 毫秒内自增位
private final static long sequenceBits = 12L;
// 机器ID偏左移12位
private final static long workerIdShift = sequenceBits;
// 数据中心ID左移17位
private final static long datacenterIdShift = sequenceBits + workerIdBits;
// 时间毫秒左移22位
private final static long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
private final static long sequenceMask = -1L ^ (-1L << sequenceBits);
/* 上次生产id时间戳 */
private static long lastTimestamp = -1L;
// 0,并发控制
private long sequence = 0L;
private final long workerId;
// 数据标识id部分
private final long datacenterId;
public IdWorker() {
this.datacenterId = getDatacenterId(maxDatacenterId);
this.workerId = getMaxWorkerId(datacenterId, maxWorkerId);
}
/**
* @param workerId 工作机器ID
* @param datacenterId 序列号
*/
public IdWorker(long workerId, long datacenterId) {
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < 0) {
throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
}
this.workerId = workerId;
this.datacenterId = datacenterId;
}
/**
* 获取下一个ID
*
* @return
*/
public synchronized long nextId() {
long timestamp = timeGen();
if (timestamp < lastTimestamp) {
throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
}
if (lastTimestamp == timestamp) {
// 当前毫秒内,则+1
sequence = (sequence + 1) & sequenceMask;
if (sequence == 0) {
// 当前毫秒内计数满了,则等待下一秒
timestamp = tilNextMillis(lastTimestamp);
}
} else {
sequence = 0L;
}
lastTimestamp = timestamp;
// ID偏移组合生成最终的ID,并返回ID
long nextId = ((timestamp - twepoch) << timestampLeftShift)
| (datacenterId << datacenterIdShift)
| (workerId << workerIdShift) | sequence;
return nextId;下·
}
private long tilNextMillis(final long lastTimestamp) {
long timestamp = this.timeGen();
while (timestamp <= lastTimestamp) {
timestamp = this.timeGen();
}
return timestamp;
}
private long timeGen() {
return System.currentTimeMillis();
}
/**
* <p>
* 获取 maxWorkerId
* </p>
*/
protected static long getMaxWorkerId(long datacenterId, long maxWorkerId) {
StringBuffer mpid = new StringBuffer();
mpid.append(datacenterId);
String name = ManagementFactory.getRuntimeMXBean().getName();
if (!name.isEmpty()) {
/*
* GET jvmPid
*/
mpid.append(name.split("@")[0]);
}
/*
* MAC + PID 的 hashcode 获取16个低位
*/
return (mpid.toString().hashCode() & 0xffff) % (maxWorkerId + 1);
}
/**
* <p>
* 数据标识id部分
* </p>
*/
protected static long getDatacenterId(long maxDatacenterId) {
long id = 0L;
try {
InetAddress ip = InetAddress.getLocalHost();
NetworkInterface network = NetworkInterface.getByInetAddress(ip);
if (network == null) {
id = 1L;
} else {
byte[] mac = network.getHardwareAddress();
id = ((0x000000FF & (long) mac[mac.length - 1])
| (0x0000FF00 & (((long) mac[mac.length - 2]) << 8))) >> 6;
id = id % (maxDatacenterId + 1);
}
} catch (Exception e) {
System.out.println(" getDatacenterId: " + e.getMessage());
}
return id;
}
}
整合SpringBoot使用
在整合SpringBoot时,将IdWorker配置为一个bean对象,在项目启动时就配置IdWorker实例,比如:
@Configuration
public class IdWorkerConfig {
//配置为bean
@Bean
public IdWorker getSnowFlakeFactory() {
IdWorker idWorker = new IdWorker(datacenterId,machineId);
return idWorker;
}
}
// 具体使用,比如某个service
@Service
public class Service{
@Resource
private IdWorker IdWorker;
public void test() {
long id = idWorker.nextId();
}
}