HashMap底层原理

  • 写在前面
  • JDK1.7版本——HashMap
  • java.1.7源码分析
  • new一个HashMap实例的存储流程图如下:
  • API常用方法
  • API中重要的变量
  • 第一步:申明一个HashMap对象
  • 第二步:存放键值对,put()方法
  • 第三步:获取数据get()
  • 对HashMap的其他操作
  • 扩容源码resize()
  • JDK1.8版本——HashMap
  • 红黑树的原理
  • java1.8源码分析
  • Node类
  • ThreeNode 红黑树
  • 具体使用方法
  • hash值的计算
  • putVal方法
  • 扩容代码
  • get方法获取value
  • 转换成红黑树
  • 删除结点
  • 哈希表解决Hash冲突
  • 为什么HashMap具备下述特点:键-值(key-value)都允许为空、线程不安全、不保证有序、存储位置随时间变化
  • 总结



Android hasmap使用 android hashmap原理_Android hasmap使用

写在前面

HashMap实现了Map, Cloneable, Serializable接口,继承了AbstractMap类,Map也是属于容器的父接口,Map接口主要用来存储的是键值对,根据hashCode值存储数据,大多数情况下可以直接定位到它的值,因而具有很快的访问速度,但遍历的顺序却是不确定的。HashMap最多只允许有一条记录的键为null,允许多个值为null。HashMap的线程并不安全,可能多个线程对HashMap进行操作会导致数据不一致,如果想满足线程安全,可以使用Collections帮助类的synchronizedMap方法使HashMap具有线程安全能力,或者使用ConcurrentHashMap。

Android hasmap使用 android hashmap原理_加载_02

JDK1.7版本——HashMap

JAVA7对于HashMap的实现主要用的数据结构是数组+链表,每个数组中的每个元素是一个单向链表,下图中每个绿色的实体就是内部类Entry的实例对象,Entry包括四个属性:key、value、hash值和指向下一个Entry对象的next指针。每个链表相当于一个hashtable的桶,链表主要用于解决hash冲突:如果不同key值计算出来的hash值相同,将会存储到数组相同的位置,由于之前的hash值数组位置已经存放了元素,则将原先位置的元素移到单链表的中,冲突hash值对应的键值存放到数组元素中。(发生冲突时新元素总是放在数组中,也就是在链表的头部,然后将原来的元素移入到链表中,类似于单链表的头插法!)

该采用链表解决hash冲突的方法 = 链地址法

重要参数

1.capacity:当前数组容量,始终保持 2^n,可以扩容,扩容后数组大小为当前的 2 倍。

2. loadFactor:负载因子,默认为 0.75。

3. threshold:扩容的阈值,等于 capacity * loadFactor

Android hasmap使用 android hashmap原理_数组_03

java.1.7源码分析

类的定义:基于Map接口的实现类,继承了AbstractMap抽象类,实现了Cloneable接口和Serializable接口,可实现序列化和拷贝。

public class HashMap<K,V>
         extends AbstractMap<K,V> 
         implements Map<K,V>, Cloneable, Serializable

Entry内部类实现源码,具体信息看注释!Entry主要作用也就是用来存储HashMap中的Key和Value,通过HashCode计算出Entry对象应该去的数组下标位置。

/** 
 * Entry类实现了Map.Entry接口
 * 即 实现了getKey()、getValue()、equals(Object o)和hashCode()等方法
**/  
static class Entry<K,V> implements Map.Entry<K,V> {
    final K key;  // 键
    V value;  // 值
    Entry<K,V> next; // 指向下一个节点 ,也是一个Entry对象,从而形成解决hash冲突的单链表
    int hash;  // hash值
  
    /** 
     * 构造方法,创建一个Entry 
     * 参数:哈希值h,键值k,值v、下一个节点n 
     */  
    Entry(int h, K k, V v, Entry<K,V> n) {  
        value = v;  
        next = n;  
        key = k;  
        hash = h;  
    }  
  
    // 返回 与 此项 对应的键
    public final K getKey() {  
        return key;  
    }  

    // 返回 与 此项 对应的值
    public final V getValue() {  
        return value;  
    }  
  
    public final V setValue(V newValue) {  
        V oldValue = value;  
        value = newValue;  
        return oldValue;  
    }  
    
   /** 
     * equals()
     * 作用:判断2个Entry是否相等,必须key和value都相等,才返回true  
     */ 
      public final boolean equals(Object o) {  
        if (!(o instanceof Map.Entry))  
            return false;  
        Map.Entry e = (Map.Entry)o;  
        Object k1 = getKey();  
        Object k2 = e.getKey();  
        if (k1 == k2 || (k1 != null && k1.equals(k2))) {  
            Object v1 = getValue();  
            Object v2 = e.getValue();  
            if (v1 == v2 || (v1 != null && v1.equals(v2)))  
                return true;  
        }  
        return false;  
    }  
    
    /** 
     * hashCode() 
     */ 
    public final int hashCode() { 
        return Objects.hashCode(getKey()) ^ Objects.hashCode(getValue());  
    }  
  
    public final String toString() {  
        return getKey() + "=" + getValue();  
    }  
  
    /** 
     * 当向HashMap中添加元素时,即调用put(k,v)时, 
     * 对已经在HashMap中k位置进行v的覆盖时,会调用此方法 
     * 此处没做任何处理 
     */  
    void recordAccess(HashMap<K,V> m) {  
    }  
  
    /** 
     * 当从HashMap中删除了一个Entry时,会调用该函数 
     * 此处没做任何处理 
     */  
    void recordRemoval(HashMap<K,V> m) {  
    } 

}
new一个HashMap实例的存储流程图如下:

Android hasmap使用 android hashmap原理_map_04

API常用方法
V get(Object key); // 获得指定键的值
V put(K key, V value);  // 添加键值对
void putAll(Map<? extends K, ? extends V> m);  // 将指定Map中的键值对 复制到 此Map中
V remove(Object key);  // 删除该键值对

boolean containsKey(Object key); // 判断是否存在该键的键值对;是 则返回true
boolean containsValue(Object value);  // 判断是否存在该值的键值对;是 则返回true
 
Set<K> keySet();  // 单独抽取key序列,将所有key生成一个Set
Collection<V> values();  // 单独value序列,将所有value生成一个Collection

void clear(); // 清除哈希表中的所有键值对
int size();  // 返回哈希表中所有 键值对的数量 = 数组中的键值对 + 链表中的键值对
boolean isEmpty(); // 判断HashMap是否为空;size == 0时 表示为 空
API中重要的变量
// 1. 容量(capacity): HashMap中数组的长度
// a. 容量范围:必须是2的幂 & <最大容量(2的30次方)
// b. 初始容量 = 哈希表创建时的容量
  // 默认容量 = 16 = 1<<4 = 00001中的1向左移4位 = 10000 = 十进制的2^4=16
  static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
  // 最大容量 =  2的30次方(若传入的容量过大,将被最大值替换)
  static final int MAXIMUM_CAPACITY = 1 << 30;

// 2. 加载因子(Load factor):HashMap在其容量自动增加前可达到多满的一种尺度
// a. 加载因子越大、填满的元素越多 = 空间利用率高、但冲突的机会加大、查找效率变低(因为链表变长了)
// b. 加载因子越小、填满的元素越少 = 空间利用率小、冲突的机会减小、查找效率高(链表不长)
  // 实际加载因子
  final float loadFactor;
  // 默认加载因子 = 0.75
  static final float DEFAULT_LOAD_FACTOR = 0.75f;

// 3. 扩容阈值(threshold):当哈希表的大小 ≥ 扩容阈值时,就会扩容哈希表(即扩充HashMap的容量) 
// a. 扩容 = 对哈希表进行resize操作(即重建内部数据结构),从而哈希表将具有大约两倍的桶数
// b. 扩容阈值 = 容量 x 加载因子
  int threshold;

// 4. 其他
 // 存储数据的Entry类型 数组,长度 = 2的幂
 // HashMap的实现方式 = 拉链法,Entry数组上的每个元素本质上是一个单向链表
  transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;  
 // HashMap的大小,即 HashMap中存储的键值对的数量
  transient int size;

加载因子详细说明:

Android hasmap使用 android hashmap原理_map_05

第一步:申明一个HashMap对象
/**
  * 函数使用原型
  */
  Map<String,Integer> map = new HashMap<String,Integer>();

 /**
   * 源码分析:主要是HashMap的构造函数 = 4个
   * 仅贴出关于HashMap构造函数的源码
   */
  public class HashMap<K,V>
      extends AbstractMap<K,V>
      implements Map<K,V>, Cloneable, Serializable{

    // 省略上节阐述的参数
    
  /**
     * 构造函数1:默认构造函数(无参)
     * 加载因子 & 容量 = 默认 = 0.75、16
     */
    public HashMap() {
        // 实际上是调用构造函数3:指定“容量大小”和“加载因子”的构造函数
        // 传入的指定容量 & 加载因子 = 默认
        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR); 
    }

    /**
     * 构造函数2:指定“容量大小”的构造函数
     * 加载因子 = 默认 = 0.75 、容量 = 指定大小
     */
    public HashMap(int initialCapacity) {
        // 实际上是调用指定“容量大小”和“加载因子”的构造函数
        // 只是在传入的加载因子参数 = 默认加载因子
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
        
    }

    /**
     * 构造函数3:指定“容量大小”和“加载因子”的构造函数
     * 加载因子 & 容量 = 自己指定
     */
    public HashMap(int initialCapacity, float loadFactor) {

        // HashMap的最大容量只能是MAXIMUM_CAPACITY,哪怕传入的 > 最大容量
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;

        // 设置 加载因子
        this.loadFactor = loadFactor;
        // 设置 扩容阈值 = 初始容量
        // 注:此处不是真正的阈值,是为了扩展table,该阈值后面会重新计算,下面会详细讲解  
        threshold = initialCapacity;   

        init(); // 一个空方法用于未来的子对象扩展
    }

    /**
     * 构造函数4:包含“子Map”的构造函数
     * 即 构造出来的HashMap包含传入Map的映射关系
     * 加载因子 & 容量 = 默认
     */

    public HashMap(Map<? extends K, ? extends V> m) {

        // 设置容量大小 & 加载因子 = 默认
        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
                DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);

        // 该方法用于初始化 数组 & 阈值,下面会详细说明
        inflateTable(threshold);

        // 将传入的子Map中的全部元素逐个添加到HashMap中
        putAllForCreate(m);
    }
}
第二步:存放键值对,put()方法
/**
   * 函数使用原型
   */
   		map.put("A", 1);
        map.put("B", 2);
        map.put("C", 3);
        map.put("D", 4);
        map.put("E", 5);

   /**
     * 源码分析:主要分析: HashMap的put函数
     */
    public V put(K key, V value)
(分析1)// 1. 若 哈希表未初始化(即 table为空) 
        // 则使用 构造函数时设置的阈值(即初始容量) 初始化 数组table  
        if (table == EMPTY_TABLE) { 
        inflateTable(threshold); 
    }  
        // 2. 判断key是否为空值null
(分析2)// 2.1 若key == null,则将该键-值 存放到数组table 中的第1个位置,即table [0]
        // (本质:key = Null时,hash值 = 0,故存放到table[0]中)
        // 该位置永远只有1个value,新传进来的value会覆盖旧的value
        if (key == null)
            return putForNullKey(value);

(分析3) // 2.2 若 key ≠ null,则计算存放数组 table 中的位置(下标、索引)
        // a. 根据键值key计算hash值
        int hash = hash(key);
        // b. 根据hash值 最终获得 key对应存放的数组Table中位置
        int i = indexFor(hash, table.length);

        // 3. 判断该key对应的值是否已存在(通过遍历 以该数组元素为头结点的链表 逐个判断)
        for (Entry<K,V> e = table[i]; e != null; e = e.next) {
            Object k;
(分析4)// 3.1 若该key已存在(即 key-value已存在 ),则用 新value 替换 旧value
            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                V oldValue = e.value;
                e.value = value;
                e.recordAccess(this);
                return oldValue; //并返回旧的value
            }
        }

        modCount++;

(分析5)// 3.2 若 该key不存在,则将“key-value”添加到table中
        addEntry(hash, key, value, i);
        return null;
    }
第三步:获取数据get()
/**
   * 函数原型
   * 作用:根据键key,向HashMap获取对应的值
   */ 
   map.get(key);


 /**
   * 源码分析
   */ 
   public V get(Object key) {  

    // 1. 当key == null时,则到 以哈希表数组中的第1个元素(即table[0])为头结点的链表去寻找对应 key == null的键
    if (key == null)  
        return getForNullKey(); --> 分析1

    // 2. 当key ≠ null时,去获得对应值 -->分析2
    Entry<K,V> entry = getEntry(key);
  
    return null == entry ? null : entry.getValue();  
}  


 /**
   * 分析1:getForNullKey()
   * 作用:当key == null时,则到 以哈希表数组中的第1个元素(即table[0])为头结点的链表去寻找对应 key == null的键
   */ 
private V getForNullKey() {  

    if (size == 0) {  
        return null;  
    }  

    // 遍历以table[0]为头结点的链表,寻找 key==null 对应的值
    for (Entry<K,V> e = table[0]; e != null; e = e.next) {  

        // 从table[0]中取key==null的value值 
        if (e.key == null)  
            return e.value; 
    }  
    return null;  
}  
 
 /**
   * 分析2:getEntry(key)
   * 作用:当key ≠ null时,去获得对应值
   */  
final Entry<K,V> getEntry(Object key) {  

    if (size == 0) {  
        return null;  
    }  

    // 1. 根据key值,通过hash()计算出对应的hash值
    int hash = (key == null) ? 0 : hash(key);  

    // 2. 根据hash值计算出对应的数组下标
    // 3. 遍历 以该数组下标的数组元素为头结点的链表所有节点,寻找该key对应的值
    for (Entry<K,V> e = table[indexFor(hash, table.length)];  e != null;  e = e.next) {  

        Object k;  
        // 若 hash值 & key 相等,则证明该Entry = 我们要的键值对
        // 通过equals()判断key是否相等
        if (e.hash == hash &&  
            ((k = e.key) == key || (key != null && key.equals(k))))  
            return e;  
    }  
    return null;  
}
对HashMap的其他操作
/**
   * 函数:isEmpty()
   * 作用:判断HashMap是否为空,即无键值对;size == 0时 表示为 空 
   */

public boolean isEmpty() {  
    return size == 0;  
} 

 /**
   * 函数:size()
   * 作用:返回哈希表中所有 键值对的数量 = 数组中的键值对 + 链表中的键值对
   */

   public int size() {  
    return size;  
}  

 /**
   * 函数:clear()
   * 作用:清空哈希表,即删除所有键值对
   * 原理:将数组table中存储的Entry全部置为null、size置为0
   */ 
public void clear() {  
    modCount++;  
    Arrays.fill(table, null);
    size = 0;
}  

/**
   * 函数:putAll(Map<? extends K, ? extends V> m)
   * 作用:将指定Map中的键值对 复制到 此Map中
   * 原理:类似Put函数
   */ 

    public void putAll(Map<? extends K, ? extends V> m) {  
    // 1. 统计需复制多少个键值对  
    int numKeysToBeAdded = m.size();  
    if (numKeysToBeAdded == 0)  
        return; 

    // 2. 若table还没初始化,先用刚刚统计的复制数去初始化table  
    if (table == EMPTY_TABLE) {  
        inflateTable((int) Math.max(numKeysToBeAdded * loadFactor, threshold));  
    }  
  
    // 3. 若需复制的数目 > 阈值,则需先扩容 
    if (numKeysToBeAdded > threshold) {  
        int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);  
        if (targetCapacity > MAXIMUM_CAPACITY)  
            targetCapacity = MAXIMUM_CAPACITY;  
        int newCapacity = table.length;  
        while (newCapacity < targetCapacity)  
            newCapacity <<= 1;  
        if (newCapacity > table.length)  
            resize(newCapacity);  
    }  
    // 4. 开始复制(实际上不断调用Put函数插入)  
    for (Map.Entry<? extends K, ? extends V> e : m.entrySet())  
        put(e.getKey(), e.getValue());
}  

 /**
   * 函数:remove(Object key)
   * 作用:删除该键值对
   */ 

public V remove(Object key) {  
    Entry<K,V> e = removeEntryForKey(key);  
    return (e == null ? null : e.value);  
}  
  
final Entry<K,V> removeEntryForKey(Object key) {  
    if (size == 0) {  
        return null;  
    }  
    // 1. 计算hash值
    int hash = (key == null) ? 0 : hash(key);  
    // 2. 计算存储的数组下标位置
    int i = indexFor(hash, table.length);  
    Entry<K,V> prev = table[i];  
    Entry<K,V> e = prev;  
  
    while (e != null) {  
        Entry<K,V> next = e.next;  
        Object k;  
        if (e.hash == hash &&  
            ((k = e.key) == key || (key != null && key.equals(k)))) {  
            modCount++;  
            size--; 
            // 若删除的是table数组中的元素(即链表的头结点) 
            // 则删除操作 = 将头结点的next引用存入table[i]中  
            if (prev == e) 
                table[i] = next;

            //否则 将以table[i]为头结点的链表中,当前Entry的前1个Entry中的next 设置为 当前Entry的next(即删除当前Entry = 直接跳过当前Entry)
            else  
                prev.next = next;   
            e.recordRemoval(this);  
            return e;  
        }  
        prev = e;  
        e = next;  
    }  
  
    return e;  
} 

 /**
   * 函数:containsKey(Object key)
   * 作用:判断是否存在该键的键值对;是 则返回true
   * 原理:调用get(),判断是否为Null
   */
   public boolean containsKey(Object key) {  
    return getEntry(key) != null; 
} 

 /**
   * 函数:containsValue(Object value)
   * 作用:判断是否存在该值的键值对;是 则返回true
   */   
public boolean containsValue(Object value) {  
    // 若value为空,则调用containsNullValue()  
    if (value == null)
        return containsNullValue();  
    
    // 若value不为空,则遍历链表中的每个Entry,通过equals()比较values 判断是否存在
    Entry[] tab = table;
    for (int i = 0; i < tab.length ; i++)  
        for (Entry e = tab[i] ; e != null ; e = e.next)  
            if (value.equals(e.value)) 
                return true;//返回true  
    return false;  
}  
// value为空时调用的方法  
private boolean containsNullValue() {  
    Entry[] tab = table;  
    for (int i = 0; i < tab.length ; i++)  
        for (Entry e = tab[i] ; e != null ; e = e.next)  
            if (e.value == null)
                return true;  
    return false;  
}
扩容源码resize()

在扩容resize()过程中,在将旧数组上的数据 转移到 新数组上时,转移数据操作 = 按旧链表的正序遍历链表、在新链表的头部依次插入,即在转移数据、扩容后,容易出现链表逆序的情况。设重新计算存储位置后不变,即扩容前 = 1->2->3,扩容后 = 3->2->1.此时若(多线程)并发执行 put()操作,一旦出现扩容情况,则 容易出现 环形链表,从而在获取数据、遍历链表时 形成死循环(Infinite Loop),即 死锁的状态.

/**
   * 源码分析:resize(2 * table.length)
   * 作用:当容量不足时(容量 > 阈值),则扩容(扩到2倍)
   */ 
   void resize(int newCapacity) {  
    
    // 1. 保存旧数组(old table) 
    Entry[] oldTable = table;  

    // 2. 保存旧容量(old capacity ),即数组长度
    int oldCapacity = oldTable.length; 

    // 3. 若旧容量已经是系统默认最大容量了,那么将阈值设置成整型的最大值,退出    
    if (oldCapacity == MAXIMUM_CAPACITY) {  
        threshold = Integer.MAX_VALUE;  
        return;  
    }  
  
    // 4. 根据新容量(2倍容量)新建1个数组,即新table  
    Entry[] newTable = new Entry[newCapacity];  

    // 5. (重点分析)将旧数组上的数据(键值对)转移到新table中,从而完成扩容 ->>分析1.1 
    transfer(newTable); 

    // 6. 新数组table引用到HashMap的table属性上
    table = newTable;  

    // 7. 重新设置阈值  
    threshold = (int)(newCapacity * loadFactor); 
} 

 /**
   * 分析1.1:transfer(newTable); 
   * 作用:将旧数组上的数据(键值对)转移到新table中,从而完成扩容
   * 过程:按旧链表的正序遍历链表、在新链表的头部依次插入
   */ 
void transfer(Entry[] newTable) {
      // 1. src引用了旧数组
      Entry[] src = table; 

      // 2. 获取新数组的大小 = 获取新容量大小                 
      int newCapacity = newTable.length;

      // 3. 通过遍历 旧数组,将旧数组上的数据(键值对)转移到新数组中
      for (int j = 0; j < src.length; j++) { 
          // 3.1 取得旧数组的每个元素  
          Entry<K,V> e = src[j];           
          if (e != null) {
              // 3.2 释放旧数组的对象引用(for循环后,旧数组不再引用任何对象)
              src[j] = null; 
              do { 
                  // 3.3 遍历 以该数组元素为首 的链表
                  // 注:转移链表时,因是单链表,故要保存下1个结点,否则转移后链表会断开
                  Entry<K,V> next = e.next; 
                 // 3.3 重新计算每个元素的存储位置
                 int i = indexFor(e.hash, newCapacity); 
                 // 3.4 将元素放在数组上:采用单链表的头插入方式 = 在链表头上存放数据 = 将数组位置的原有数据放在后1个指针、将需放入的数据放到数组位置中
                 // 即 扩容后,可能出现逆序:按旧链表的正序遍历链表、在新链表的头部依次插入
                 e.next = newTable[i]; 
                 newTable[i] = e;  
                 // 访问下1个Entry链上的元素,如此不断循环,直到遍历完该链表上的所有节点
                 e = next;             
             } while (e != null);
             // 如此不断循环,直到遍历完数组上的所有数据元素
         }
     }
 }

分析参考文章

JDK1.8版本——HashMap

JDK1.8版本对HashMap进行了一些修改,与1.7版本最大的不同就是利用了红黑树,所以1.8版本的HashMap的组成是由数组+链表+红黑树组成。我们在查找的时候,根据hash值能够快速定位到数组的具体下标,但是之后去链表中查找具体的Entry结点必须要一个一个查找下去,整体的时间复杂度就为O(n)。为了降低时间复杂度,在Java8中,规定了当链表中的元素超过8个以后,就会将链表转换为红黑树,在这些位置进行查找的时候就可以降低时间复杂度度O(log(N))。

Android hasmap使用 android hashmap原理_加载_06

红黑树的原理

首先红黑树是二分搜索树一种,主要是为了避免出现极端情况,导致二分搜索树的成为链表结构。所以诞生出了红黑树,尽量避免出现极端情况。而平衡二叉树是一种自平衡的二分搜索树,一旦结点的左右高度差大于1,就会自动平衡,采取自己内部处理措施。平衡二叉树的弊端就在于频繁的去处理自平衡问题,极大的影响到了代码本身的执行效率,所以便诞生了红黑树。红黑树保证了对元素查找、删除和插入的时间复杂度控制在O(logn),不会存在极端情况下的O(n)。

Android hasmap使用 android hashmap原理_Android hasmap使用_07


红黑树的特点:

1.每个结点要么是红的要么是黑的。
2.根结点是黑的。
3.每个叶结点(叶结点即指树尾端NIL指针或NULL结点)都是黑的。 (这一点在HashMap里并没有去实现NIL节点的,所以HashMap里的叶子节点就是我们正常理解的叶子节点)
4.如果一个结点是红的,那么它的两个儿子都是黑的。 (这一点可以得到一个很有用的结论:已平衡的情况下,一个红色节点,它的parent、left和right都为黑色)
5.对于任意结点而言,其到叶结点树尾端NIL指针的每条路径都包含相同数目的黑结点。(这一点在每一次的插入和删除时保证)

(本篇文章主要讲解hashmap,所以想了解红黑树可以查阅另一篇文章)红黑树详解

java1.8源码分析

继承体系和1.7版本完全相同

public class HashMap<K,V> extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable {
    transient Node<K,V>[] table;//结点数组
    transient Set<Map.Entry<K,V>> entrySet;
    transient int size;
    transient int modCount;
     int threshold;
     final float loadFactor;
    
    }

Android hasmap使用 android hashmap原理_java_08

常量:

/** 
   * 主要参数 同  JDK 1.7 
   * 即:容量、加载因子、扩容阈值(要求、范围均相同)
   */

  // 1. 容量(capacity): 必须是2的幂 & <最大容量(2的30次方)
  static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // 默认容量 = 16 = 1<<4 = 00001中的1向左移4位 = 10000 = 十进制的2^4=16
  static final int MAXIMUM_CAPACITY = 1 << 30; // 最大容量 =  2的30次方(若传入的容量过大,将被最大值替换)

  // 2. 加载因子(Load factor):HashMap在其容量自动增加前可达到多满的一种尺度 
  final float loadFactor; // 实际加载因子
  static final float DEFAULT_LOAD_FACTOR = 0.75f; // 默认加载因子 = 0.75

  // 3. 扩容阈值(threshold):当哈希表的大小 ≥ 扩容阈值时,就会扩容哈希表(即扩充HashMap的容量) 
  // a. 扩容 = 对哈希表进行resize操作(即重建内部数据结构),从而哈希表将具有大约两倍的桶数
  // b. 扩容阈值 = 容量 x 加载因子
  int threshold;

  // 4. 其他
  transient Node<K,V>[] table;  // 存储数据的Node类型 数组,长度 = 2的幂;数组的每个元素 = 1个单链表
  transient int size;// HashMap的大小,即 HashMap中存储的键值对的数量
 

  /** 
   * 与红黑树相关的参数
   */
   // 1. 桶的树化阈值:即 链表转成红黑树的阈值,在存储数据时,当链表长度 > 该值时,则将链表转换成红黑树
   static final int TREEIFY_THRESHOLD = 8; 
   // 2. 桶的链表还原阈值:即 红黑树转为链表的阈值,当在扩容(resize())时(此时HashMap的数据存储位置会重新计算),在重新计算存储位置后,当原有的红黑树内数量 < 6时,则将 红黑树转换成链表
   static final int UNTREEIFY_THRESHOLD = 6;
   // 3. 最小树形化容量阈值:即 当哈希表中的容量 > 该值时,才允许树形化链表 (即 将链表 转换成红黑树)
   // 否则,若桶内元素太多时,则直接扩容,而不是树形化
   // 为了避免进行扩容、树形化选择的冲突,这个值不能小于 4 * TREEIFY_THRESHOLD
   static final int MIN_TREEIFY_CAPACITY = 64;
Node类
/** 
  * Node  = HashMap的内部类,实现了Map.Entry接口,本质是 = 一个映射(键值对)
  * 实现了getKey()、getValue()、equals(Object o)和hashCode()等方法
  **/  
static class Node<K,V> implements Map.Entry<K,V> {//链表数据结构
        final int hash;//hash值不可改变
        final K key;
        V value;
        Node<K,V> next;

        Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }

        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }
 /** 
        * equals()
        * 作用:判断2个Entry是否相等,必须key和value都相等,才返回true  
        */
        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }
ThreeNode 红黑树
/**
  * 红黑树节点 实现类:继承自LinkedHashMap.Entry<K,V>类
  */
  static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {  

  	// 属性 = 父节点、左子树、右子树、删除辅助节点 + 颜色
    TreeNode<K,V> parent;  
    TreeNode<K,V> left;   
    TreeNode<K,V> right;
    TreeNode<K,V> prev;   
    boolean red;   

    // 构造函数
    TreeNode(int hash, K key, V val, Node<K,V> next) {  
        super(hash, key, val, next);  
    }  
  
    // 返回当前节点的根节点  
    final TreeNode<K,V> root() {  
        for (TreeNode<K,V> r = this, p;;) {  
            if ((p = r.parent) == null)  
                return r;  
            r = p;  
        }  
    }
具体使用方法
V get(Object key); // 获得指定键的值
V put(K key, V value);  // 添加键值对
void putAll(Map<? extends K, ? extends V> m);  // 将指定Map中的键值对 复制到 此Map中
V remove(Object key);  // 删除该键值对

boolean containsKey(Object key); // 判断是否存在该键的键值对;是 则返回true
boolean containsValue(Object value);  // 判断是否存在该值的键值对;是 则返回true
 
Set<K> keySet();  // 单独抽取key序列,将所有key生成一个Set
Collection<V> values();  // 单独value序列,将所有value生成一个Collection

void clear(); // 清除哈希表中的所有键值对
int size();  // 返回哈希表中所有 键值对的数量 = 数组中的键值对 + 链表中的键值对
boolean isEmpty(); // 判断HashMap是否为空;size == 0时 表示为 空
hash值的计算
/**
     * 分析1:hash(key)
     * 作用:计算传入数据的哈希码(哈希值、Hash值)
     * 该函数在JDK 1.7 和 1.8 中的实现不同,但原理一样 = 扰动函数 = 使得根据key生成的哈希码(hash值)分布更加均匀、更具备随机性,避免出现hash值冲突(即指不同key但生成同1个hash值)
     * JDK 1.7 做了9次扰动处理 = 4次位运算 + 5次异或运算
     * JDK 1.8 简化了扰动函数 = 只做了2次扰动 = 1次位运算 + 1次异或运算
     */

      // JDK 1.7实现:将 键key 转换成 哈希码(hash值)操作  = 使用hashCode() + 4次位运算 + 5次异或运算(9次扰动)
      static final int hash(int h) {
        h ^= k.hashCode(); 
        h ^= (h >>> 20) ^ (h >>> 12);
        return h ^ (h >>> 7) ^ (h >>> 4);
     }

      // JDK 1.8实现:将 键key 转换成 哈希码(hash值)操作 = 使用hashCode() + 1次位运算 + 1次异或运算(2次扰动)
      // 1. 取hashCode值: h = key.hashCode() 
      // 2. 高位参与低位的运算:h ^ (h >>> 16)  
      static final int hash(Object key) {
           int h;
            return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
            // a. 当key = null时,hash值 = 0,所以HashMap的key 可为null      
            // 注:对比HashTable,HashTable对key直接hashCode(),若key为null时,会抛出异常,所以HashTable的key不可为null
            // b. 当key ≠ null时,则通过先计算出 key的 hashCode()(记为h),然后 对哈希码进行 扰动处理: 按位 异或(^) 哈希码自身右移16位后的二进制
     }

   /**
     * 计算存储位置的函数分析:indexFor(hash, table.length)
     * 注:该函数仅存在于JDK 1.7 ,JDK 1.8中实际上无该函数(直接用1条语句判断写出),但原理相同
     * 为了方便讲解,故提前到此讲解
     */
     static int indexFor(int h, int length) {  
          return h & (length-1); 
          // 将对哈希码扰动处理后的结果 与运算(&) (数组长度-1),最终得到存储在数组table的位置(即数组下标、索引)
          }

    //与1.7jdk区别在于1.8分别将key的hashcode值异或value的hashcode值,1.7Objects.hashCode(getKey()) ^ Objects.hashCode(getValue());
     public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

Android hasmap使用 android hashmap原理_加载_09

putVal方法
/**
     * 分析2:putVal(hash(key), key, value, false, true)
     */
     final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {

    		Node<K,V>[] tab; Node<K,V> p; int n, i;

    	// 1. 若哈希表的数组tab为空,则 通过resize() 创建
    	// 所以,初始化哈希表的时机 = 第1次调用put函数时,即调用resize() 初始化创建
    	// 关于resize()的源码分析将在下面讲解扩容时详细分析,此处先跳过
   		if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;

    	// 2. 计算插入存储的数组索引i:根据键值key计算的hash值 得到
    	// 此处的数组下标计算方式 = i = (n - 1) & hash,同JDK 1.7中的indexFor(),上面已详细描述

    	// 3. 插入时,需判断是否存在Hash冲突:
    	// 若不存在(即当前table[i] == null),则直接在该数组位置新建节点,插入完毕
    	// 否则,代表存在Hash冲突,即当前存储位置已存在节点,则依次往下判断:a. 当前位置的key是否与需插入的key相同、b. 判断需插入的数据结构是否为红黑树 or 链表
    	if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);  // newNode(hash, key, value, null)的源码 = new Node<>(hash, key, value, next)

    else {
        Node<K,V> e; K k;

        // a. 判断 table[i]的元素的key是否与 需插入的key一样,若相同则 直接用新value 覆盖 旧value
        // 判断原则:equals()
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;

        // b. 继续判断:需插入的数据结构是否为红黑树 or 链表
        // 若是红黑树,则直接在树中插入 or 更新键值对
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); ->>分析3

        // 若是链表,则在链表中插入 or 更新键值对
        // i.  遍历table[i],判断Key是否已存在:采用equals() 对比当前遍历节点的key 与 需插入数据的key:若已存在,则直接用新value 覆盖 旧value
        // ii. 遍历完毕后仍无发现上述情况,则直接在链表尾部插入数据
        // 注:新增节点后,需判断链表长度是否>8(8 = 桶的树化阈值):若是,则把链表转换为红黑树
        
        else {
            for (int binCount = 0; ; ++binCount) {
            	// 对于ii:若数组的下1个位置,表示已到表尾也没有找到key值相同节点,则新建节点 = 插入节点
            	// 注:此处是从链表尾插入,与JDK 1.7不同(从链表头插入,即永远都是添加到数组的位置,原来数组位置的数据则往后移)
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);

                    // 插入节点后,若链表节点>数阈值,则将链表转换为红黑树
                    if (binCount >= TREEIFY_THRESHOLD - 1) 
                        treeifyBin(tab, hash); // 树化操作
                    break;
                }

                // 对于i
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;

                // 更新p指向下一个节点,继续遍历
                p = e;
            }
        }

        // 对i情况的后续操作:发现key已存在,直接用新value 覆盖 旧value & 返回旧value
        if (e != null) { 
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e); // 替换旧值时会调用的方法(默认实现为空)
            return oldValue;
        }
    }

    ++modCount;

    // 插入成功后,判断实际存在的键值对数量size > 最大容量threshold
    // 若 > ,则进行扩容 ->>分析4(但单独讲解,请直接跳出该代码块)
    if (++size > threshold)
        resize();

    afterNodeInsertion(evict);// 插入成功时会调用的方法(默认实现为空)
    return null;

}

	/**
     * 分析3:putTreeVal(this, tab, hash, key, value)
     * 作用:向红黑树插入 or 更新数据(键值对)
     * 过程:遍历红黑树判断该节点的key是否与需插入的key 相同:
     *      a. 若相同,则新value覆盖旧value
     *      b. 若不相同,则插入
     */

     final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
                                       int h, K k, V v) {
            Class<?> kc = null;
            boolean searched = false;
            TreeNode<K,V> root = (parent != null) ? root() : this;
            for (TreeNode<K,V> p = root;;) {
                int dir, ph; K pk;
                if ((ph = p.hash) > h)
                    dir = -1;
                else if (ph < h)
                    dir = 1;
                else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                    return p;
                else if ((kc == null &&
                          (kc = comparableClassFor(k)) == null) ||
                         (dir = compareComparables(kc, k, pk)) == 0) {
                    if (!searched) {
                        TreeNode<K,V> q, ch;
                        searched = true;
                        if (((ch = p.left) != null &&
                             (q = ch.find(h, k, kc)) != null) ||
                            ((ch = p.right) != null &&
                             (q = ch.find(h, k, kc)) != null))
                            return q;
                    }
                    dir = tieBreakOrder(k, pk);
                }

                TreeNode<K,V> xp = p;
                if ((p = (dir <= 0) ? p.left : p.right) == null) {
                    Node<K,V> xpn = xp.next;
                    TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
                    if (dir <= 0)
                        xp.left = x;
                    else
                        xp.right = x;
                    xp.next = x;
                    x.parent = x.prev = xp;
                    if (xpn != null)
                        ((TreeNode<K,V>)xpn).prev = x;
                    moveRootToFront(tab, balanceInsertion(root, x));
                    return null;
                }
            }
        }

Android hasmap使用 android hashmap原理_数组_10

扩容代码
/**
     * 分析4:resize()
     * 该函数有2种使用情况:1.初始化哈希表 2.当前数组容量过小,需扩容
     */
   final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table; // 扩容前的数组(当前数组)
    int oldCap = (oldTab == null) ? 0 : oldTab.length; // 扩容前的数组的容量 = 长度
    int oldThr = threshold;// 扩容前的数组的阈值
    int newCap, newThr = 0;

    // 针对情况2:若扩容前的数组容量超过最大值,则不再扩充
    if (oldCap > 0) {
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }

        // 针对情况2:若无超过最大值,就扩充为原来的2倍
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // 通过右移扩充2倍
    }

    // 针对情况1:初始化哈希表(采用指定 or 默认值)
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;

    else {               // zero initial threshold signifies using defaults
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }

    // 计算新的resize上限
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }

    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;

    if (oldTab != null) {
        // 把每个bucket都移动到新的buckets中
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;

                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);

                else { // 链表优化重hash的代码块
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        // 原索引
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        // 原索引 + oldCap
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    // 原索引放到bucket里
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    // 原索引+oldCap放到bucket里
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

Android hasmap使用 android hashmap原理_Android hasmap使用_11

get方法获取value
/**
   * 函数原型
   * 作用:根据键key,向HashMap获取对应的值
   */ 
   map.get(key);


 /**
   * 源码分析
   */ 
   public V get(Object key) {
    Node<K,V> e;
    // 1. 计算需获取数据的hash值
    // 2. 通过getNode()获取所查询的数据 ->>分析1
    // 3. 获取后,判断数据是否为空
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}

/**
   * 分析1:getNode(hash(key), key))
   */ 
final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;

    // 1. 计算存放在数组table中的位置
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {

        // 4. 通过该函数,依次在数组、红黑树、链表中查找(通过equals()判断)
        // a. 先在数组中找,若存在,则直接返回
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;

        // b. 若数组中没有,则到红黑树中寻找
        if ((e = first.next) != null) {
            // 在树中get
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);

            // c. 若红黑树中也没有,则通过遍历,到链表中寻找
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}
转换成红黑树

当数组中的某个单链表的长度大于8时,就会调用此方法就行链表转换成红黑树的方法。

final void treeifyBin(Node<K,V>[] tab, int hash) {
        int n, index; Node<K,V> e;
        //当tab的长度小于64时就会调用resize()方法
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            resize();
        else if ((e = tab[index = (n - 1) & hash]) != null) {
            TreeNode<K,V> hd = null, tl = null;
            // 遍历链表,将链表元素转化成TreeNode链
            do {
                TreeNode<K,V> p = replacementTreeNode(e, null);
                if (tl == null)
                    hd = p;
                else {
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            if ((tab[index] = hd) != null)
                hd.treeify(tab);
        }
    }
    TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
        return new TreeNode<>(p.hash, p.key, p.value, next);
    }
删除结点
final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
            Node<K,V> node = null, e; K k; V v;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            else if ((e = p.next) != null) {
                if (p instanceof TreeNode)
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                else {
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
                if (node instanceof TreeNode)
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                else if (node == p)
                    tab[index] = node.next;
                else
                    p.next = node.next;
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }

哈希表解决Hash冲突

Android hasmap使用 android hashmap原理_map_12

为什么HashMap具备下述特点:键-值(key-value)都允许为空、线程不安全、不保证有序、存储位置随时间变化

Android hasmap使用 android hashmap原理_map_13

总结

Android hasmap使用 android hashmap原理_java_14

相同点:

  1. 默认初始容量都是16,默认加载因子都是0.75。容量必须是2的指数倍数
  2. 扩容时都将容量增加1倍
  3. 根据hash值得到桶的索引方法一样,都是i=hash&(cap-1)
  4. 初始时表为空,都是懒加载,在插入第一个键值对时初始化
  5. 键为null的hash值为0,都会放在哈希表的第一个桶中
    不同点:
  6. 最为重要的一点是,底层结构不一样,1.7是数组+链表,1.8则是数组+链表+红黑树结构
  7. 主要区别是插入键值对的put方法的区别。1.8中会将节点插入到链表尾部,而1.7中会将节点作为链表的新的头节点
  8. JDk1.8中一个键的hash是保持不变的,JDK1.7时resize()时有可能改变键的hahs值
  9. rehash时1.8会保持原链表的顺序,而1.7会颠倒链表的顺序
  10. JDK1.8是通过hash&cap==0将链表分散,而JDK1.7是通过更新hashSeed来修改hash值达到分散的目的