HashMap底层原理
- 写在前面
- JDK1.7版本——HashMap
- java.1.7源码分析
- new一个HashMap实例的存储流程图如下:
- API常用方法
- API中重要的变量
- 第一步:申明一个HashMap对象
- 第二步:存放键值对,put()方法
- 第三步:获取数据get()
- 对HashMap的其他操作
- 扩容源码resize()
- JDK1.8版本——HashMap
- 红黑树的原理
- java1.8源码分析
- Node类
- ThreeNode 红黑树
- 具体使用方法
- hash值的计算
- putVal方法
- 扩容代码
- get方法获取value
- 转换成红黑树
- 删除结点
- 哈希表解决Hash冲突
- 为什么HashMap具备下述特点:键-值(key-value)都允许为空、线程不安全、不保证有序、存储位置随时间变化
- 总结
写在前面
HashMap实现了Map, Cloneable, Serializable接口,继承了AbstractMap类,Map也是属于容器的父接口,Map接口主要用来存储的是键值对,根据hashCode值存储数据,大多数情况下可以直接定位到它的值,因而具有很快的访问速度,但遍历的顺序却是不确定的。HashMap最多只允许有一条记录的键为null,允许多个值为null。HashMap的线程并不安全,可能多个线程对HashMap进行操作会导致数据不一致,如果想满足线程安全,可以使用Collections帮助类的synchronizedMap方法使HashMap具有线程安全能力,或者使用ConcurrentHashMap。
JDK1.7版本——HashMap
JAVA7对于HashMap的实现主要用的数据结构是数组+链表,每个数组中的每个元素是一个单向链表,下图中每个绿色的实体就是内部类Entry的实例对象,Entry包括四个属性:key、value、hash值和指向下一个Entry对象的next指针。每个链表相当于一个hashtable的桶,链表主要用于解决hash冲突:如果不同key值计算出来的hash值相同,将会存储到数组相同的位置,由于之前的hash值数组位置已经存放了元素,则将原先位置的元素移到单链表的中,冲突hash值对应的键值存放到数组元素中。(发生冲突时新元素总是放在数组中,也就是在链表的头部,然后将原来的元素移入到链表中,类似于单链表的头插法!)
该采用链表解决hash冲突的方法 = 链地址法
重要参数
1.capacity:当前数组容量,始终保持 2^n,可以扩容,扩容后数组大小为当前的 2 倍。
2. loadFactor:负载因子,默认为 0.75。
3. threshold:扩容的阈值,等于 capacity * loadFactor
java.1.7源码分析
类的定义:基于Map接口的实现类,继承了AbstractMap抽象类,实现了Cloneable接口和Serializable接口,可实现序列化和拷贝。
public class HashMap<K,V>
extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable
Entry内部类实现源码,具体信息看注释!Entry主要作用也就是用来存储HashMap中的Key和Value,通过HashCode计算出Entry对象应该去的数组下标位置。
/**
* Entry类实现了Map.Entry接口
* 即 实现了getKey()、getValue()、equals(Object o)和hashCode()等方法
**/
static class Entry<K,V> implements Map.Entry<K,V> {
final K key; // 键
V value; // 值
Entry<K,V> next; // 指向下一个节点 ,也是一个Entry对象,从而形成解决hash冲突的单链表
int hash; // hash值
/**
* 构造方法,创建一个Entry
* 参数:哈希值h,键值k,值v、下一个节点n
*/
Entry(int h, K k, V v, Entry<K,V> n) {
value = v;
next = n;
key = k;
hash = h;
}
// 返回 与 此项 对应的键
public final K getKey() {
return key;
}
// 返回 与 此项 对应的值
public final V getValue() {
return value;
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
/**
* equals()
* 作用:判断2个Entry是否相等,必须key和value都相等,才返回true
*/
public final boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry e = (Map.Entry)o;
Object k1 = getKey();
Object k2 = e.getKey();
if (k1 == k2 || (k1 != null && k1.equals(k2))) {
Object v1 = getValue();
Object v2 = e.getValue();
if (v1 == v2 || (v1 != null && v1.equals(v2)))
return true;
}
return false;
}
/**
* hashCode()
*/
public final int hashCode() {
return Objects.hashCode(getKey()) ^ Objects.hashCode(getValue());
}
public final String toString() {
return getKey() + "=" + getValue();
}
/**
* 当向HashMap中添加元素时,即调用put(k,v)时,
* 对已经在HashMap中k位置进行v的覆盖时,会调用此方法
* 此处没做任何处理
*/
void recordAccess(HashMap<K,V> m) {
}
/**
* 当从HashMap中删除了一个Entry时,会调用该函数
* 此处没做任何处理
*/
void recordRemoval(HashMap<K,V> m) {
}
}
new一个HashMap实例的存储流程图如下:
API常用方法
V get(Object key); // 获得指定键的值
V put(K key, V value); // 添加键值对
void putAll(Map<? extends K, ? extends V> m); // 将指定Map中的键值对 复制到 此Map中
V remove(Object key); // 删除该键值对
boolean containsKey(Object key); // 判断是否存在该键的键值对;是 则返回true
boolean containsValue(Object value); // 判断是否存在该值的键值对;是 则返回true
Set<K> keySet(); // 单独抽取key序列,将所有key生成一个Set
Collection<V> values(); // 单独value序列,将所有value生成一个Collection
void clear(); // 清除哈希表中的所有键值对
int size(); // 返回哈希表中所有 键值对的数量 = 数组中的键值对 + 链表中的键值对
boolean isEmpty(); // 判断HashMap是否为空;size == 0时 表示为 空
API中重要的变量
// 1. 容量(capacity): HashMap中数组的长度
// a. 容量范围:必须是2的幂 & <最大容量(2的30次方)
// b. 初始容量 = 哈希表创建时的容量
// 默认容量 = 16 = 1<<4 = 00001中的1向左移4位 = 10000 = 十进制的2^4=16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
// 最大容量 = 2的30次方(若传入的容量过大,将被最大值替换)
static final int MAXIMUM_CAPACITY = 1 << 30;
// 2. 加载因子(Load factor):HashMap在其容量自动增加前可达到多满的一种尺度
// a. 加载因子越大、填满的元素越多 = 空间利用率高、但冲突的机会加大、查找效率变低(因为链表变长了)
// b. 加载因子越小、填满的元素越少 = 空间利用率小、冲突的机会减小、查找效率高(链表不长)
// 实际加载因子
final float loadFactor;
// 默认加载因子 = 0.75
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 3. 扩容阈值(threshold):当哈希表的大小 ≥ 扩容阈值时,就会扩容哈希表(即扩充HashMap的容量)
// a. 扩容 = 对哈希表进行resize操作(即重建内部数据结构),从而哈希表将具有大约两倍的桶数
// b. 扩容阈值 = 容量 x 加载因子
int threshold;
// 4. 其他
// 存储数据的Entry类型 数组,长度 = 2的幂
// HashMap的实现方式 = 拉链法,Entry数组上的每个元素本质上是一个单向链表
transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;
// HashMap的大小,即 HashMap中存储的键值对的数量
transient int size;
加载因子详细说明:
第一步:申明一个HashMap对象
/**
* 函数使用原型
*/
Map<String,Integer> map = new HashMap<String,Integer>();
/**
* 源码分析:主要是HashMap的构造函数 = 4个
* 仅贴出关于HashMap构造函数的源码
*/
public class HashMap<K,V>
extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable{
// 省略上节阐述的参数
/**
* 构造函数1:默认构造函数(无参)
* 加载因子 & 容量 = 默认 = 0.75、16
*/
public HashMap() {
// 实际上是调用构造函数3:指定“容量大小”和“加载因子”的构造函数
// 传入的指定容量 & 加载因子 = 默认
this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
}
/**
* 构造函数2:指定“容量大小”的构造函数
* 加载因子 = 默认 = 0.75 、容量 = 指定大小
*/
public HashMap(int initialCapacity) {
// 实际上是调用指定“容量大小”和“加载因子”的构造函数
// 只是在传入的加载因子参数 = 默认加载因子
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
/**
* 构造函数3:指定“容量大小”和“加载因子”的构造函数
* 加载因子 & 容量 = 自己指定
*/
public HashMap(int initialCapacity, float loadFactor) {
// HashMap的最大容量只能是MAXIMUM_CAPACITY,哪怕传入的 > 最大容量
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
// 设置 加载因子
this.loadFactor = loadFactor;
// 设置 扩容阈值 = 初始容量
// 注:此处不是真正的阈值,是为了扩展table,该阈值后面会重新计算,下面会详细讲解
threshold = initialCapacity;
init(); // 一个空方法用于未来的子对象扩展
}
/**
* 构造函数4:包含“子Map”的构造函数
* 即 构造出来的HashMap包含传入Map的映射关系
* 加载因子 & 容量 = 默认
*/
public HashMap(Map<? extends K, ? extends V> m) {
// 设置容量大小 & 加载因子 = 默认
this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
// 该方法用于初始化 数组 & 阈值,下面会详细说明
inflateTable(threshold);
// 将传入的子Map中的全部元素逐个添加到HashMap中
putAllForCreate(m);
}
}
第二步:存放键值对,put()方法
/**
* 函数使用原型
*/
map.put("A", 1);
map.put("B", 2);
map.put("C", 3);
map.put("D", 4);
map.put("E", 5);
/**
* 源码分析:主要分析: HashMap的put函数
*/
public V put(K key, V value)
(分析1)// 1. 若 哈希表未初始化(即 table为空)
// 则使用 构造函数时设置的阈值(即初始容量) 初始化 数组table
if (table == EMPTY_TABLE) {
inflateTable(threshold);
}
// 2. 判断key是否为空值null
(分析2)// 2.1 若key == null,则将该键-值 存放到数组table 中的第1个位置,即table [0]
// (本质:key = Null时,hash值 = 0,故存放到table[0]中)
// 该位置永远只有1个value,新传进来的value会覆盖旧的value
if (key == null)
return putForNullKey(value);
(分析3) // 2.2 若 key ≠ null,则计算存放数组 table 中的位置(下标、索引)
// a. 根据键值key计算hash值
int hash = hash(key);
// b. 根据hash值 最终获得 key对应存放的数组Table中位置
int i = indexFor(hash, table.length);
// 3. 判断该key对应的值是否已存在(通过遍历 以该数组元素为头结点的链表 逐个判断)
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
(分析4)// 3.1 若该key已存在(即 key-value已存在 ),则用 新value 替换 旧value
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue; //并返回旧的value
}
}
modCount++;
(分析5)// 3.2 若 该key不存在,则将“key-value”添加到table中
addEntry(hash, key, value, i);
return null;
}
第三步:获取数据get()
/**
* 函数原型
* 作用:根据键key,向HashMap获取对应的值
*/
map.get(key);
/**
* 源码分析
*/
public V get(Object key) {
// 1. 当key == null时,则到 以哈希表数组中的第1个元素(即table[0])为头结点的链表去寻找对应 key == null的键
if (key == null)
return getForNullKey(); --> 分析1
// 2. 当key ≠ null时,去获得对应值 -->分析2
Entry<K,V> entry = getEntry(key);
return null == entry ? null : entry.getValue();
}
/**
* 分析1:getForNullKey()
* 作用:当key == null时,则到 以哈希表数组中的第1个元素(即table[0])为头结点的链表去寻找对应 key == null的键
*/
private V getForNullKey() {
if (size == 0) {
return null;
}
// 遍历以table[0]为头结点的链表,寻找 key==null 对应的值
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
// 从table[0]中取key==null的value值
if (e.key == null)
return e.value;
}
return null;
}
/**
* 分析2:getEntry(key)
* 作用:当key ≠ null时,去获得对应值
*/
final Entry<K,V> getEntry(Object key) {
if (size == 0) {
return null;
}
// 1. 根据key值,通过hash()计算出对应的hash值
int hash = (key == null) ? 0 : hash(key);
// 2. 根据hash值计算出对应的数组下标
// 3. 遍历 以该数组下标的数组元素为头结点的链表所有节点,寻找该key对应的值
for (Entry<K,V> e = table[indexFor(hash, table.length)]; e != null; e = e.next) {
Object k;
// 若 hash值 & key 相等,则证明该Entry = 我们要的键值对
// 通过equals()判断key是否相等
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
}
return null;
}
对HashMap的其他操作
/**
* 函数:isEmpty()
* 作用:判断HashMap是否为空,即无键值对;size == 0时 表示为 空
*/
public boolean isEmpty() {
return size == 0;
}
/**
* 函数:size()
* 作用:返回哈希表中所有 键值对的数量 = 数组中的键值对 + 链表中的键值对
*/
public int size() {
return size;
}
/**
* 函数:clear()
* 作用:清空哈希表,即删除所有键值对
* 原理:将数组table中存储的Entry全部置为null、size置为0
*/
public void clear() {
modCount++;
Arrays.fill(table, null);
size = 0;
}
/**
* 函数:putAll(Map<? extends K, ? extends V> m)
* 作用:将指定Map中的键值对 复制到 此Map中
* 原理:类似Put函数
*/
public void putAll(Map<? extends K, ? extends V> m) {
// 1. 统计需复制多少个键值对
int numKeysToBeAdded = m.size();
if (numKeysToBeAdded == 0)
return;
// 2. 若table还没初始化,先用刚刚统计的复制数去初始化table
if (table == EMPTY_TABLE) {
inflateTable((int) Math.max(numKeysToBeAdded * loadFactor, threshold));
}
// 3. 若需复制的数目 > 阈值,则需先扩容
if (numKeysToBeAdded > threshold) {
int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
if (targetCapacity > MAXIMUM_CAPACITY)
targetCapacity = MAXIMUM_CAPACITY;
int newCapacity = table.length;
while (newCapacity < targetCapacity)
newCapacity <<= 1;
if (newCapacity > table.length)
resize(newCapacity);
}
// 4. 开始复制(实际上不断调用Put函数插入)
for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
put(e.getKey(), e.getValue());
}
/**
* 函数:remove(Object key)
* 作用:删除该键值对
*/
public V remove(Object key) {
Entry<K,V> e = removeEntryForKey(key);
return (e == null ? null : e.value);
}
final Entry<K,V> removeEntryForKey(Object key) {
if (size == 0) {
return null;
}
// 1. 计算hash值
int hash = (key == null) ? 0 : hash(key);
// 2. 计算存储的数组下标位置
int i = indexFor(hash, table.length);
Entry<K,V> prev = table[i];
Entry<K,V> e = prev;
while (e != null) {
Entry<K,V> next = e.next;
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) {
modCount++;
size--;
// 若删除的是table数组中的元素(即链表的头结点)
// 则删除操作 = 将头结点的next引用存入table[i]中
if (prev == e)
table[i] = next;
//否则 将以table[i]为头结点的链表中,当前Entry的前1个Entry中的next 设置为 当前Entry的next(即删除当前Entry = 直接跳过当前Entry)
else
prev.next = next;
e.recordRemoval(this);
return e;
}
prev = e;
e = next;
}
return e;
}
/**
* 函数:containsKey(Object key)
* 作用:判断是否存在该键的键值对;是 则返回true
* 原理:调用get(),判断是否为Null
*/
public boolean containsKey(Object key) {
return getEntry(key) != null;
}
/**
* 函数:containsValue(Object value)
* 作用:判断是否存在该值的键值对;是 则返回true
*/
public boolean containsValue(Object value) {
// 若value为空,则调用containsNullValue()
if (value == null)
return containsNullValue();
// 若value不为空,则遍历链表中的每个Entry,通过equals()比较values 判断是否存在
Entry[] tab = table;
for (int i = 0; i < tab.length ; i++)
for (Entry e = tab[i] ; e != null ; e = e.next)
if (value.equals(e.value))
return true;//返回true
return false;
}
// value为空时调用的方法
private boolean containsNullValue() {
Entry[] tab = table;
for (int i = 0; i < tab.length ; i++)
for (Entry e = tab[i] ; e != null ; e = e.next)
if (e.value == null)
return true;
return false;
}
扩容源码resize()
在扩容resize()过程中,在将旧数组上的数据 转移到 新数组上时,转移数据操作 = 按旧链表的正序遍历链表、在新链表的头部依次插入,即在转移数据、扩容后,容易出现链表逆序的情况。设重新计算存储位置后不变,即扩容前 = 1->2->3,扩容后 = 3->2->1.此时若(多线程)并发执行 put()操作,一旦出现扩容情况,则 容易出现 环形链表,从而在获取数据、遍历链表时 形成死循环(Infinite Loop),即 死锁的状态.
/**
* 源码分析:resize(2 * table.length)
* 作用:当容量不足时(容量 > 阈值),则扩容(扩到2倍)
*/
void resize(int newCapacity) {
// 1. 保存旧数组(old table)
Entry[] oldTable = table;
// 2. 保存旧容量(old capacity ),即数组长度
int oldCapacity = oldTable.length;
// 3. 若旧容量已经是系统默认最大容量了,那么将阈值设置成整型的最大值,退出
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}
// 4. 根据新容量(2倍容量)新建1个数组,即新table
Entry[] newTable = new Entry[newCapacity];
// 5. (重点分析)将旧数组上的数据(键值对)转移到新table中,从而完成扩容 ->>分析1.1
transfer(newTable);
// 6. 新数组table引用到HashMap的table属性上
table = newTable;
// 7. 重新设置阈值
threshold = (int)(newCapacity * loadFactor);
}
/**
* 分析1.1:transfer(newTable);
* 作用:将旧数组上的数据(键值对)转移到新table中,从而完成扩容
* 过程:按旧链表的正序遍历链表、在新链表的头部依次插入
*/
void transfer(Entry[] newTable) {
// 1. src引用了旧数组
Entry[] src = table;
// 2. 获取新数组的大小 = 获取新容量大小
int newCapacity = newTable.length;
// 3. 通过遍历 旧数组,将旧数组上的数据(键值对)转移到新数组中
for (int j = 0; j < src.length; j++) {
// 3.1 取得旧数组的每个元素
Entry<K,V> e = src[j];
if (e != null) {
// 3.2 释放旧数组的对象引用(for循环后,旧数组不再引用任何对象)
src[j] = null;
do {
// 3.3 遍历 以该数组元素为首 的链表
// 注:转移链表时,因是单链表,故要保存下1个结点,否则转移后链表会断开
Entry<K,V> next = e.next;
// 3.3 重新计算每个元素的存储位置
int i = indexFor(e.hash, newCapacity);
// 3.4 将元素放在数组上:采用单链表的头插入方式 = 在链表头上存放数据 = 将数组位置的原有数据放在后1个指针、将需放入的数据放到数组位置中
// 即 扩容后,可能出现逆序:按旧链表的正序遍历链表、在新链表的头部依次插入
e.next = newTable[i];
newTable[i] = e;
// 访问下1个Entry链上的元素,如此不断循环,直到遍历完该链表上的所有节点
e = next;
} while (e != null);
// 如此不断循环,直到遍历完数组上的所有数据元素
}
}
}
JDK1.8版本——HashMap
JDK1.8版本对HashMap进行了一些修改,与1.7版本最大的不同就是利用了红黑树,所以1.8版本的HashMap的组成是由数组+链表+红黑树组成。我们在查找的时候,根据hash值能够快速定位到数组的具体下标,但是之后去链表中查找具体的Entry结点必须要一个一个查找下去,整体的时间复杂度就为O(n)。为了降低时间复杂度,在Java8中,规定了当链表中的元素超过8个以后,就会将链表转换为红黑树,在这些位置进行查找的时候就可以降低时间复杂度度O(log(N))。
红黑树的原理
首先红黑树是二分搜索树一种,主要是为了避免出现极端情况,导致二分搜索树的成为链表结构。所以诞生出了红黑树,尽量避免出现极端情况。而平衡二叉树是一种自平衡的二分搜索树,一旦结点的左右高度差大于1,就会自动平衡,采取自己内部处理措施。平衡二叉树的弊端就在于频繁的去处理自平衡问题,极大的影响到了代码本身的执行效率,所以便诞生了红黑树。红黑树保证了对元素查找、删除和插入的时间复杂度控制在O(logn),不会存在极端情况下的O(n)。
红黑树的特点:
1.每个结点要么是红的要么是黑的。
2.根结点是黑的。
3.每个叶结点(叶结点即指树尾端NIL指针或NULL结点)都是黑的。 (这一点在HashMap里并没有去实现NIL节点的,所以HashMap里的叶子节点就是我们正常理解的叶子节点)
4.如果一个结点是红的,那么它的两个儿子都是黑的。 (这一点可以得到一个很有用的结论:已平衡的情况下,一个红色节点,它的parent、left和right都为黑色)
5.对于任意结点而言,其到叶结点树尾端NIL指针的每条路径都包含相同数目的黑结点。(这一点在每一次的插入和删除时保证)
(本篇文章主要讲解hashmap,所以想了解红黑树可以查阅另一篇文章)红黑树详解
java1.8源码分析
继承体系和1.7版本完全相同
public class HashMap<K,V> extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable {
transient Node<K,V>[] table;//结点数组
transient Set<Map.Entry<K,V>> entrySet;
transient int size;
transient int modCount;
int threshold;
final float loadFactor;
}
常量:
/**
* 主要参数 同 JDK 1.7
* 即:容量、加载因子、扩容阈值(要求、范围均相同)
*/
// 1. 容量(capacity): 必须是2的幂 & <最大容量(2的30次方)
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // 默认容量 = 16 = 1<<4 = 00001中的1向左移4位 = 10000 = 十进制的2^4=16
static final int MAXIMUM_CAPACITY = 1 << 30; // 最大容量 = 2的30次方(若传入的容量过大,将被最大值替换)
// 2. 加载因子(Load factor):HashMap在其容量自动增加前可达到多满的一种尺度
final float loadFactor; // 实际加载因子
static final float DEFAULT_LOAD_FACTOR = 0.75f; // 默认加载因子 = 0.75
// 3. 扩容阈值(threshold):当哈希表的大小 ≥ 扩容阈值时,就会扩容哈希表(即扩充HashMap的容量)
// a. 扩容 = 对哈希表进行resize操作(即重建内部数据结构),从而哈希表将具有大约两倍的桶数
// b. 扩容阈值 = 容量 x 加载因子
int threshold;
// 4. 其他
transient Node<K,V>[] table; // 存储数据的Node类型 数组,长度 = 2的幂;数组的每个元素 = 1个单链表
transient int size;// HashMap的大小,即 HashMap中存储的键值对的数量
/**
* 与红黑树相关的参数
*/
// 1. 桶的树化阈值:即 链表转成红黑树的阈值,在存储数据时,当链表长度 > 该值时,则将链表转换成红黑树
static final int TREEIFY_THRESHOLD = 8;
// 2. 桶的链表还原阈值:即 红黑树转为链表的阈值,当在扩容(resize())时(此时HashMap的数据存储位置会重新计算),在重新计算存储位置后,当原有的红黑树内数量 < 6时,则将 红黑树转换成链表
static final int UNTREEIFY_THRESHOLD = 6;
// 3. 最小树形化容量阈值:即 当哈希表中的容量 > 该值时,才允许树形化链表 (即 将链表 转换成红黑树)
// 否则,若桶内元素太多时,则直接扩容,而不是树形化
// 为了避免进行扩容、树形化选择的冲突,这个值不能小于 4 * TREEIFY_THRESHOLD
static final int MIN_TREEIFY_CAPACITY = 64;
Node类
/**
* Node = HashMap的内部类,实现了Map.Entry接口,本质是 = 一个映射(键值对)
* 实现了getKey()、getValue()、equals(Object o)和hashCode()等方法
**/
static class Node<K,V> implements Map.Entry<K,V> {//链表数据结构
final int hash;//hash值不可改变
final K key;
V value;
Node<K,V> next;
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
/**
* equals()
* 作用:判断2个Entry是否相等,必须key和value都相等,才返回true
*/
public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}
ThreeNode 红黑树
/**
* 红黑树节点 实现类:继承自LinkedHashMap.Entry<K,V>类
*/
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
// 属性 = 父节点、左子树、右子树、删除辅助节点 + 颜色
TreeNode<K,V> parent;
TreeNode<K,V> left;
TreeNode<K,V> right;
TreeNode<K,V> prev;
boolean red;
// 构造函数
TreeNode(int hash, K key, V val, Node<K,V> next) {
super(hash, key, val, next);
}
// 返回当前节点的根节点
final TreeNode<K,V> root() {
for (TreeNode<K,V> r = this, p;;) {
if ((p = r.parent) == null)
return r;
r = p;
}
}
具体使用方法
V get(Object key); // 获得指定键的值
V put(K key, V value); // 添加键值对
void putAll(Map<? extends K, ? extends V> m); // 将指定Map中的键值对 复制到 此Map中
V remove(Object key); // 删除该键值对
boolean containsKey(Object key); // 判断是否存在该键的键值对;是 则返回true
boolean containsValue(Object value); // 判断是否存在该值的键值对;是 则返回true
Set<K> keySet(); // 单独抽取key序列,将所有key生成一个Set
Collection<V> values(); // 单独value序列,将所有value生成一个Collection
void clear(); // 清除哈希表中的所有键值对
int size(); // 返回哈希表中所有 键值对的数量 = 数组中的键值对 + 链表中的键值对
boolean isEmpty(); // 判断HashMap是否为空;size == 0时 表示为 空
hash值的计算
/**
* 分析1:hash(key)
* 作用:计算传入数据的哈希码(哈希值、Hash值)
* 该函数在JDK 1.7 和 1.8 中的实现不同,但原理一样 = 扰动函数 = 使得根据key生成的哈希码(hash值)分布更加均匀、更具备随机性,避免出现hash值冲突(即指不同key但生成同1个hash值)
* JDK 1.7 做了9次扰动处理 = 4次位运算 + 5次异或运算
* JDK 1.8 简化了扰动函数 = 只做了2次扰动 = 1次位运算 + 1次异或运算
*/
// JDK 1.7实现:将 键key 转换成 哈希码(hash值)操作 = 使用hashCode() + 4次位运算 + 5次异或运算(9次扰动)
static final int hash(int h) {
h ^= k.hashCode();
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}
// JDK 1.8实现:将 键key 转换成 哈希码(hash值)操作 = 使用hashCode() + 1次位运算 + 1次异或运算(2次扰动)
// 1. 取hashCode值: h = key.hashCode()
// 2. 高位参与低位的运算:h ^ (h >>> 16)
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
// a. 当key = null时,hash值 = 0,所以HashMap的key 可为null
// 注:对比HashTable,HashTable对key直接hashCode(),若key为null时,会抛出异常,所以HashTable的key不可为null
// b. 当key ≠ null时,则通过先计算出 key的 hashCode()(记为h),然后 对哈希码进行 扰动处理: 按位 异或(^) 哈希码自身右移16位后的二进制
}
/**
* 计算存储位置的函数分析:indexFor(hash, table.length)
* 注:该函数仅存在于JDK 1.7 ,JDK 1.8中实际上无该函数(直接用1条语句判断写出),但原理相同
* 为了方便讲解,故提前到此讲解
*/
static int indexFor(int h, int length) {
return h & (length-1);
// 将对哈希码扰动处理后的结果 与运算(&) (数组长度-1),最终得到存储在数组table的位置(即数组下标、索引)
}
//与1.7jdk区别在于1.8分别将key的hashcode值异或value的hashcode值,1.7Objects.hashCode(getKey()) ^ Objects.hashCode(getValue());
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
putVal方法
/**
* 分析2:putVal(hash(key), key, value, false, true)
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// 1. 若哈希表的数组tab为空,则 通过resize() 创建
// 所以,初始化哈希表的时机 = 第1次调用put函数时,即调用resize() 初始化创建
// 关于resize()的源码分析将在下面讲解扩容时详细分析,此处先跳过
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// 2. 计算插入存储的数组索引i:根据键值key计算的hash值 得到
// 此处的数组下标计算方式 = i = (n - 1) & hash,同JDK 1.7中的indexFor(),上面已详细描述
// 3. 插入时,需判断是否存在Hash冲突:
// 若不存在(即当前table[i] == null),则直接在该数组位置新建节点,插入完毕
// 否则,代表存在Hash冲突,即当前存储位置已存在节点,则依次往下判断:a. 当前位置的key是否与需插入的key相同、b. 判断需插入的数据结构是否为红黑树 or 链表
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null); // newNode(hash, key, value, null)的源码 = new Node<>(hash, key, value, next)
else {
Node<K,V> e; K k;
// a. 判断 table[i]的元素的key是否与 需插入的key一样,若相同则 直接用新value 覆盖 旧value
// 判断原则:equals()
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
// b. 继续判断:需插入的数据结构是否为红黑树 or 链表
// 若是红黑树,则直接在树中插入 or 更新键值对
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); ->>分析3
// 若是链表,则在链表中插入 or 更新键值对
// i. 遍历table[i],判断Key是否已存在:采用equals() 对比当前遍历节点的key 与 需插入数据的key:若已存在,则直接用新value 覆盖 旧value
// ii. 遍历完毕后仍无发现上述情况,则直接在链表尾部插入数据
// 注:新增节点后,需判断链表长度是否>8(8 = 桶的树化阈值):若是,则把链表转换为红黑树
else {
for (int binCount = 0; ; ++binCount) {
// 对于ii:若数组的下1个位置,表示已到表尾也没有找到key值相同节点,则新建节点 = 插入节点
// 注:此处是从链表尾插入,与JDK 1.7不同(从链表头插入,即永远都是添加到数组的位置,原来数组位置的数据则往后移)
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
// 插入节点后,若链表节点>数阈值,则将链表转换为红黑树
if (binCount >= TREEIFY_THRESHOLD - 1)
treeifyBin(tab, hash); // 树化操作
break;
}
// 对于i
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
// 更新p指向下一个节点,继续遍历
p = e;
}
}
// 对i情况的后续操作:发现key已存在,直接用新value 覆盖 旧value & 返回旧value
if (e != null) {
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e); // 替换旧值时会调用的方法(默认实现为空)
return oldValue;
}
}
++modCount;
// 插入成功后,判断实际存在的键值对数量size > 最大容量threshold
// 若 > ,则进行扩容 ->>分析4(但单独讲解,请直接跳出该代码块)
if (++size > threshold)
resize();
afterNodeInsertion(evict);// 插入成功时会调用的方法(默认实现为空)
return null;
}
/**
* 分析3:putTreeVal(this, tab, hash, key, value)
* 作用:向红黑树插入 or 更新数据(键值对)
* 过程:遍历红黑树判断该节点的key是否与需插入的key 相同:
* a. 若相同,则新value覆盖旧value
* b. 若不相同,则插入
*/
final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
int h, K k, V v) {
Class<?> kc = null;
boolean searched = false;
TreeNode<K,V> root = (parent != null) ? root() : this;
for (TreeNode<K,V> p = root;;) {
int dir, ph; K pk;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((pk = p.key) == k || (k != null && k.equals(pk)))
return p;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0) {
if (!searched) {
TreeNode<K,V> q, ch;
searched = true;
if (((ch = p.left) != null &&
(q = ch.find(h, k, kc)) != null) ||
((ch = p.right) != null &&
(q = ch.find(h, k, kc)) != null))
return q;
}
dir = tieBreakOrder(k, pk);
}
TreeNode<K,V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
Node<K,V> xpn = xp.next;
TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
if (dir <= 0)
xp.left = x;
else
xp.right = x;
xp.next = x;
x.parent = x.prev = xp;
if (xpn != null)
((TreeNode<K,V>)xpn).prev = x;
moveRootToFront(tab, balanceInsertion(root, x));
return null;
}
}
}
扩容代码
/**
* 分析4:resize()
* 该函数有2种使用情况:1.初始化哈希表 2.当前数组容量过小,需扩容
*/
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table; // 扩容前的数组(当前数组)
int oldCap = (oldTab == null) ? 0 : oldTab.length; // 扩容前的数组的容量 = 长度
int oldThr = threshold;// 扩容前的数组的阈值
int newCap, newThr = 0;
// 针对情况2:若扩容前的数组容量超过最大值,则不再扩充
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 针对情况2:若无超过最大值,就扩充为原来的2倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // 通过右移扩充2倍
}
// 针对情况1:初始化哈希表(采用指定 or 默认值)
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
// 计算新的resize上限
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
// 把每个bucket都移动到新的buckets中
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // 链表优化重hash的代码块
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
// 原索引
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
// 原索引 + oldCap
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
// 原索引放到bucket里
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
// 原索引+oldCap放到bucket里
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
get方法获取value
/**
* 函数原型
* 作用:根据键key,向HashMap获取对应的值
*/
map.get(key);
/**
* 源码分析
*/
public V get(Object key) {
Node<K,V> e;
// 1. 计算需获取数据的hash值
// 2. 通过getNode()获取所查询的数据 ->>分析1
// 3. 获取后,判断数据是否为空
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
/**
* 分析1:getNode(hash(key), key))
*/
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
// 1. 计算存放在数组table中的位置
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
// 4. 通过该函数,依次在数组、红黑树、链表中查找(通过equals()判断)
// a. 先在数组中找,若存在,则直接返回
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
// b. 若数组中没有,则到红黑树中寻找
if ((e = first.next) != null) {
// 在树中get
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
// c. 若红黑树中也没有,则通过遍历,到链表中寻找
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
转换成红黑树
当数组中的某个单链表的长度大于8时,就会调用此方法就行链表转换成红黑树的方法。
final void treeifyBin(Node<K,V>[] tab, int hash) {
int n, index; Node<K,V> e;
//当tab的长度小于64时就会调用resize()方法
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
resize();
else if ((e = tab[index = (n - 1) & hash]) != null) {
TreeNode<K,V> hd = null, tl = null;
// 遍历链表,将链表元素转化成TreeNode链
do {
TreeNode<K,V> p = replacementTreeNode(e, null);
if (tl == null)
hd = p;
else {
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
if ((tab[index] = hd) != null)
hd.treeify(tab);
}
}
TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
return new TreeNode<>(p.hash, p.key, p.value, next);
}
删除结点
final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null) {
if (p instanceof TreeNode)
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
else {
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
if (node instanceof TreeNode)
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
else if (node == p)
tab[index] = node.next;
else
p.next = node.next;
++modCount;
--size;
afterNodeRemoval(node);
return node;
}
}
return null;
}
哈希表解决Hash冲突
为什么HashMap具备下述特点:键-值(key-value)都允许为空、线程不安全、不保证有序、存储位置随时间变化
总结
相同点:
- 默认初始容量都是16,默认加载因子都是0.75。容量必须是2的指数倍数
- 扩容时都将容量增加1倍
- 根据hash值得到桶的索引方法一样,都是i=hash&(cap-1)
- 初始时表为空,都是懒加载,在插入第一个键值对时初始化
- 键为null的hash值为0,都会放在哈希表的第一个桶中
不同点: - 最为重要的一点是,底层结构不一样,1.7是数组+链表,1.8则是数组+链表+红黑树结构
- 主要区别是插入键值对的put方法的区别。1.8中会将节点插入到链表尾部,而1.7中会将节点作为链表的新的头节点
- JDk1.8中一个键的hash是保持不变的,JDK1.7时resize()时有可能改变键的hahs值
- rehash时1.8会保持原链表的顺序,而1.7会颠倒链表的顺序
- JDK1.8是通过hash&cap==0将链表分散,而JDK1.7是通过更新hashSeed来修改hash值达到分散的目的