在上一篇《Kafka Consumer多线程实例》中我们讨论了KafkaConsumer多线程的两种写法:多KafkaConsumer多线程以及单KafkaConsumer多线程。在第二种用法中我使用的是自动提交的方式,省去了多线程提交位移的麻烦。很多人跑来问如果是手动提交应该怎么写?由于KafkaConsumer不是线程安全的,因此我们不能简单地在多个线程中直接调用consumer.commitSync来提交位移。本文将给出一个实际的例子来模拟多线程消费以及手动提交位移。

  本例中包含3个类:

  • ConsumerThreadHandler类:consumer多线程的管理类,用于创建线程池以及为每个线程分配任务。另外consumer位移的提交也在这个类中进行
  • ConsumerWorker类:本质上是一个Runnable,执行真正的消费逻辑并上报位移信息给ConsumerThreadHandler
  • Main类:测试主方法类

测试代码

ConsumerWorker类

 



package huxi.test.consumer.multithreaded;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.OffsetAndMetadata;
import org.apache.kafka.common.TopicPartition;

import java.util.List;
import java.util.Map;

public class ConsumerWorker<K, V> implements Runnable {

    private final ConsumerRecords<K, V> records;
    private final Map<TopicPartition, OffsetAndMetadata> offsets;

    public ConsumerWorker(ConsumerRecords<K, V> record, Map<TopicPartition, OffsetAndMetadata> offsets) {
        this.records = record;
        this.offsets = offsets;
    }

    @Override
    public void run() {
        for (TopicPartition partition : records.partitions()) {
            List<ConsumerRecord<K, V>> partitionRecords = records.records(partition);
            for (ConsumerRecord<K, V> record : partitionRecords) {
                // 插入消息处理逻辑,本例只是打印消息
                System.out.println(String.format("topic=%s, partition=%d, offset=%d",
                        record.topic(), record.partition(), record.offset()));
            }

            // 上报位移信息
            long lastOffset = partitionRecords.get(partitionRecords.size() - 1).offset();
            synchronized (offsets) {
                if (!offsets.containsKey(partition)) {
                    offsets.put(partition, new OffsetAndMetadata(lastOffset + 1));
                } else {
                    long curr = offsets.get(partition).offset();
                    if (curr <= lastOffset + 1) {
                        offsets.put(partition, new OffsetAndMetadata(lastOffset + 1));
                    }
                }
            }
        }
    }
}



ConsumerThreadHandler类



package huxi.test.consumer.multithreaded;

import org.apache.kafka.clients.consumer.ConsumerRebalanceListener;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.clients.consumer.OffsetAndMetadata;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.errors.WakeupException;

import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;
import java.util.Properties;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;

public class ConsumerThreadHandler<K, V> {

    private final KafkaConsumer<K, V> consumer;
    private ExecutorService executors;
    private final Map<TopicPartition, OffsetAndMetadata> offsets = new HashMap<>();

    public ConsumerThreadHandler(String brokerList, String groupId, String topic) {
        Properties props = new Properties();
        props.put("bootstrap.servers", brokerList);
        props.put("group.id", groupId);
        props.put("enable.auto.commit", "false");
        props.put("auto.offset.reset", "earliest");
        props.put("key.deserializer", "org.apache.kafka.common.serialization.ByteArrayDeserializer");
        props.put("value.deserializer", "org.apache.kafka.common.serialization.ByteArrayDeserializer");
        consumer = new KafkaConsumer<>(props);
        consumer.subscribe(Arrays.asList(topic), new ConsumerRebalanceListener() {
            @Override
            public void onPartitionsRevoked(Collection<TopicPartition> partitions) {
                consumer.commitSync(offsets);
            }

            @Override
            public void onPartitionsAssigned(Collection<TopicPartition> partitions) {
                offsets.clear();
            }
        });
    }

    /**
     * 消费主方法
     * @param threadNumber  线程池中线程数
     */
    public void consume(int threadNumber) {
        executors = new ThreadPoolExecutor(
                threadNumber,
                threadNumber,
                0L,
                TimeUnit.MILLISECONDS,
                new ArrayBlockingQueue<Runnable>(1000),
                new ThreadPoolExecutor.CallerRunsPolicy());
        try {
            while (true) {
                ConsumerRecords<K, V> records = consumer.poll(1000L);
                if (!records.isEmpty()) {
                    executors.submit(new ConsumerWorker<>(records, offsets));
                }
                commitOffsets();
            }
        } catch (WakeupException e) {
            // swallow this exception
        } finally {
            commitOffsets();
            consumer.close();
        }
    }

    private void commitOffsets() {
        // 尽量降低synchronized块对offsets锁定的时间
        Map<TopicPartition, OffsetAndMetadata> unmodfiedMap;
        synchronized (offsets) {
            if (offsets.isEmpty()) {
                return;
            }
            unmodfiedMap = Collections.unmodifiableMap(new HashMap<>(offsets));
            offsets.clear();
        }
        consumer.commitSync(unmodfiedMap);
    }

    public void close() {
        consumer.wakeup();
        executors.shutdown();
    }
}



Main类



package huxi.test.consumer.multithreaded;

public class Main {

    public static void main(String[] args) {
        String brokerList = "localhost:9092";
        String topic = "test-topic";
        String groupID = "test-group";
        final ConsumerThreadHandler<byte[], byte[]> handler = new ConsumerThreadHandler<>(brokerList, groupID, topic);
        final int cpuCount = Runtime.getRuntime().availableProcessors();

        Runnable runnable = new Runnable() {
            @Override
            public void run() {
                handler.consume(cpuCount);
            }
        };
        new Thread(runnable).start();

        try {
            // 20秒后自动停止该测试程序
            Thread.sleep(20000L);
        } catch (InterruptedException e) {
            // swallow this exception
        }
        System.out.println("Starting to close the consumer...");
        handler.close();
    }
}



测试步骤

1. 首先创建一个测试topic: test-topic,10个分区,并使用kafka-producer-perf-test.sh脚本生产50万条消息

2. 运行Main,假定group.id设置为test-group

3. 新开一个终端,不断地运行以下脚本监控consumer group的消费进度

bin/kafka-consumer-groups.sh --bootstrap-server localhost:9092 --describe --group test-group

测试结果

KafkaListener多线程并发消费 kafka 多线程_runtime

LAG列全部为0表示consumer group的位移提交正常。值得一提的是,各位可以通过控制consumer.poll的超时时间来控制ConsumerThreadHandler类提交位移的频率。

感谢QQ群友的提醒,这种方式有丢失数据的时间窗口——假设T1线程在t0时间消费分区0的位移=100的消息M1,而T2线程在t1时间消费分区0的位移=101的消息M2。现在假设t3时T2线程先完成处理,于是上报位移101给Handler,但此时T1线程尚未处理完成。t4时handler提交位移101,之后T1线程发生错误,抛出异常导致位移100的消息消费失败,但由于位移已经提交到101,故消息丢失~。