一、神经网络搭建

1. 神经网络组成

tensor 张量
表示数据 多维数组*(列表)*

计算图
搭建神经网络*(只描述计算过程,不执行计算结果)*

import tensorflow as tf
x=tf.constant([[1.0,2.0]])   #输入
w=tf.constant([[3.0],[4.0]]) #w 作为权重

y=tf.matmul(x,w) #计算图的计算过程 y =x1*w1+x2*w2

tensorflow构建bp神经网络 tensorflow 神经网络搭建_神经网络

session 会话
执行计算图

with session as sess:
    print sess.run(y)

2. 神经网络实现过程

  1. 准备数据集,提取特征,作为输入喂给神经网络(NN)
  2. 搭建NN结构,计算图+会话(NN的前向传播算法 -> 输出)
  3. 大量特征数据喂给NN,迭代优化参数(NN反向传播算法->优化参数训练模型)
  4. 使用训练好的模型预测和分类

3. 神经网络搭建栗子

假设输入是商品的体积V和质量M

假设如果V + M<1 标签Y为1

神经网络图

tensorflow构建bp神经网络 tensorflow 神经网络搭建_tensorflow构建bp神经网络_02


搭建神经网络代码

1 #coding: utf-8
  2 #导入模块,生成数据集(自制数据集)
  3 import tensorflow as tf
  4 import numpy as np #python 的科学计算模块
  5 BATCH_SIZE = 8 #每次喂给神经网络的数据大小
  6 seed = 23455 #随机种子,为了使每次生成数据一致
  7 
  8 #利用seed生成随机数
  9 rng = np.random.RandomState(seed)
 10 #返回 32*2 矩阵 代表32组,体积和质量的数据
 11 X = rng.rand(32,2)
 12 #如果V+M<1 Y=1否则 Y=0
 13 #Y 作为数据集的标签
 14 Y = [[int(x0 + x1 < 1)] for (x0, x1) in X]
 15 print "X:\n",X
 16 print "Y:\n",Y 
 17 
 18 #1.定义输入,参数和输出 /前向传播过程
 19 x = tf.placeholder(tf.float32, shape = (None,2))
 20 y_= tf.placeholder(tf.float32, shape = (None,1))
 21 
 22 w1 = tf.Variable(tf.random_normal([2,3], stddev=1, seed=1))
 23 w2 = tf.Variable(tf.random_normal([3,1], stddev=1, seed=1))
 24 
 25 a = tf.matmul(x,w1)
 26 y = tf.matmul(a,w2)
 27 
 28 #2.定义损失函数和反向传播方法
 29 loss = tf.reduce_mean(tf.square(y-y_))
 30 train_step = tf.train.GradientDescentOptimizer(0.001).minimize(loss)
 31 #train_step=tf.train.MomentumOptimizer(0.001,0.9).minimize(loss)
 32 #train_step=tf.train.AdamOptimizer(0.001).minimize(loss)
 33 
 34 #3.生成会话 训练STEPS 次
 35 with tf.Session() as sess:
 36     init_op = tf.initialize_all_variables()
 37     sess.run(init_op)
 38     #打印训练前的参数
 39     print "w1:\n", sess.run(w1)
 40     print "w2:\n", sess.run(w2)
 41 
 42     #4.训练模型
 43     STEPS = 3000
 44     for i in range(STEPS):
 45         start = (i*BATCH_SIZE) % 32
 46         end = start +BATCH_SIZE
 47         sess.run(train_step, feed_dict={x: X[start:end], y_: Y[start:end]})
 48         if i % 500 == 0:
 49             total_loss = sess.run(loss, feed_dict={x: X, y_: Y})
 50             print("After %d training steps(s), loss on all data is %g" % (i,total_loss))
 51 
 52         #输出训练后的参数
 53         print "\n"
 54         print "w1:\n", sess.run(w1)
 55         print "w2:\n", sess.run(w2)

函数:

函数

功能

tf.placeholder(type,shape=None, name=None)

类似形参,搭建神经网络时占位用

np.random.RandomState(seed)

seed可有可无,有seed为了使每次生成数据一致

tf.Variable(initializer,name)

初始化参数

tf.train.GradientDescentOptimizer(0.001).minimize(loss)

这三个都是梯度下降训练损失函数

tf.train.MomentumOptimizer(0.001,0.9).minimize(loss)


tf.train.AdamOptimizer(0.001).minimize(loss)

run(fetches, feed_dict=None, options=None, run_metadata=None)

tensorflow并没有计算整个图,只是计算了与想要fetch 的值相关的部分

二、神经网络优化

1. 损失函数

1、均方误差
loss = tf.reduce_mean(tf.square(y-y_))
2、自定义损失函数
3、交叉熵

2. 学习率

学习率是参数优化过程中,参数每次变化的幅度。

更新后参数 = 更新前参数 - 学习率 × 损失函数的梯度(导数)

通过改变下列代码中,第四行的0.1,可以感受到学习率对参数优化的影响,如果学习率过大,可能会难以达到正确的优化结果,但如果参数过小,达到最优结果速度会比较慢。

1 import tensorflow as tf
  2 w = tf.Variable(tf.constant(5, dtype = tf.float32))
  3 loss = tf.square(w+1)
  4 train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
  5 with tf.Session() as sess:
  6     init_op =tf.initialize_all_variables()
  7     sess.run(init_op)
  8     for i in range(80):
  9         sess.run(train_step)
 10         w_val = sess.run(w)
 11         loss_val = sess.run(loss)
 12         print "After %s steps w is %f  loss is %f" %( i, w_val, loss_val)

所以可以采用指数下降学习率,刚开始学习率较大,提高学习速度,后来学习率变小,提高训练精度。
指数下降学习率

学习率 = 初始学习率 × 学习率衰减率^(训练轮数/BATCH_SIZE)
#BATCH_SIZE 是一次喂给神经网络的数据的组数
LEARNING_RATE = LEARNING_RATE_BASE * LEARNING_RATE_DECAY^(global_step/BATCH_SIZE)

所以学习率呈指数下降,在刚开始时候rate比较大,学习速度较快;到后来rate减小,使结果更精确。

函数: y = 0.1 * (0.99) ^x (x= [0,3000]) 图像:

tensorflow构建bp神经网络 tensorflow 神经网络搭建_神经网络_03


指数下降学习率代码:

1 import tensorflow as tf
  2 
  3 LEARNING_RATE_BASE = 0.1  #初始学习率
  4 LEARNING_RATE_DECAY = 0.99  #学习率衰减率
  5 LEARNING_RATE_STEP = 1 #学习率更新频率,通常是总数/BATCH_SIZE (一次喂给神经网络的数据大小
  6 
  7 #运行几组 BATCH_SIZE的计数器 初值是 0, 设为不训练
  8 global_step = tf.Variable(0, trainable=False)
  9 #定义指数下降学习率
 10 learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE,global_step,LEARNING_RATE_STEP, LEARNING_RATE_DECAY, staircase=True)
 11 #定义待优化的参数 初值为5
 12 w = tf.Variable(tf.constant(5, dtype=tf.float32))
 13 #定义损失函数
 14 loss = tf.square(w+1)
 15 #定义反向传播方法
 16 train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss,global_step=global_ step)
 17 #会话
 18 with tf.Session() as sess:
 19     init_op = tf.initialize_all_variables() #python2 用这个代替 global_variables_initializer()
 20     sess.run(init_op)
 21     for i in range(180):
 22         sess.run(train_step)
 23         learning_rate_val = sess.run(learning_rate)
 24         global_step_val = sess.run(global_step)
 25         w_val = sess.run(w)
 26         loss_val = sess.run(loss)
 27         print "After %s steps: global_step is %f, learning rate is %f, w is %f, loss is %f" % (i, global_step_val, learning_rate_val, w_val, loss_val)

3. 滑动平均

4. 正则化

三、mnist手写数字体识别

mnist_forward.py

import tensorflow as tf

INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500

def get_weight(shape, regularizer):
	w = tf.Variable(tf.truncated_normal(shape,stddev=0.1))
	if regularizer !=None: tf.add_to_collection('losses',tf.contrib.layers.l2_regularizer(regularizer)(w))
	return w
	
def get_bias(shape):
	b = tf.Variable(tf.zeros(shape))
	return b
	
def forward(x, regularizer):
	w1 = get_weight([INPUT_NODE, LAYER1_NODE],regularizer)
	b1 = get_bias([LAYER1_NODE])
	y1 = tf.nn.relu(tf.matmul(x,w1) + b1)
	
	w2 = get_weight([LAYER1_NODE,OUTPUT_NODE],regularizer)
	b2 = get_bias([OUTPUT_NODE])
	y = tf.matmul(y1,w2) + b2
	return y

mnist_backward.py

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_forward
import os

BATCH_SIZE = 200
LEARNING_RATE_BASE = 0.1
LEARNING_RATE_DECAY = 0.99
REGULARIZER = 0.0001
STEPS = 50000
MOVING_AVERAGE_DECAY = 0.99
MODEL_SAVE_PATH = "./model/"
MODEL_NAME = "mnist_model"

def backward(mnist):

	x = tf.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE])
	y_ = tf.placeholder(tf.float32, [None, mnist_forward.OUTPUT_NODE])
	y = mnist_forward.forward(x, REGULARIZER)
	global_step = tf.Variable(0, trainable = False)
	
	ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_,1))
	cem = tf.reduce_mean(ce)
	loss = cem + tf.add_n(tf.get_collection('losses'))
	
	learning_rate = tf.train.exponential_decay(
		LEARNING_RATE_BASE,
		global_step,
		mnist.train.num_examples / BATCH_SIZE,
		LEARNING_RATE_DECAY,
		staircase=True)
		
	train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
	
	ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
	ema_op = ema.apply(tf.trainable_variables())
	with tf.control_dependencies([train_step, ema_op]):
		train_op = tf.no_op(name = 'train')
		
	saver = tf.train.Saver()
	
	with tf.Session() as sess:
		init_op = tf.initialize_all_variables()
		sess.run(init_op)
		
		for i in range(STEPS):
			xs, ys = mnist.train.next_batch(BATCH_SIZE)
			_, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys})
			if i % 1000 == 0:
				print("After %d training step(s), loss on training batch is %g." % (step, loss_value))
				saver.save(sess,os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step)
				

				
def main():
	mnist = input_data.read_data_sets("./data/", one_hot=True)
	backward(mnist)
	
if __name__ == '__main__':
	main()

mnist_test.py

import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_forward
import mnist_backward
TEST_INTERVAL_SECS = 5

def test(mnist):
	with tf.Graph().as_default() as g:
		x = tf.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE])
		y_ = tf.placeholder(tf.float32, [None, mnist_forward.OUTPUT_NODE])
		y = mnist_forward.forward(x, None)
		
		ema = tf.train.ExponentialMovingAverage(mnist_backward.MOVING_AVERAGE_DECAY)
		ema_restore = ema.variables_to_restore()
		saver = tf.train.Saver(ema_restore)
		
		correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_, 1))
		accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
		
		while True:
			with tf.Session() as sess:
				ckpt = tf.train.get_checkpoint_state(mnist_backward.MODEL_SAVE_PATH)
				if ckpt and ckpt.model_checkpoint_path:
					saver.restore(sess, ckpt.model_checkpoint_path)
					global_step = ckpt.model_checkpoint_path.split('/'[-1].split('-')[-1]
					accuracy_score =sess.run(accuracy, feed_dict={x: mnist.test.images, y_:mnist.test.labels})
					print("After %s training step(s), test accuracy = %g" % (global_step, accuracy_score))
				else:
					print('No checkpoint file found')
					return 
			time.sleep(TEST_INTERVAL_SECS)
			
	def main():
		mnist = input_data.read_data_sets("./data/", one_hot=True)
		test(mnist)
		
if __name__ == '__main__':
	main()