kafka简介:

kafka是一个发布订阅消息系统,由topic区分消息种类,每个topic中可以有多个partition,每个kafka集群有一个多个broker服务器组成,producer可以发布消息到kafka中,consumer可以消费kafka中的数据。kafka就是生产者和消费者中间的一个暂存区,可以保存一段时间的数据保证使用。

kafka+zookeeper

zookeeper作为解决分布式一致性问题的工具而被kafka依赖。而分布式模式,即去中心化的集群模式,需要让消费者知道现在有哪些生产者(对于消费者而言,kafka就是生产者)是可用的。如果没了zk消费者如何知道呢?如果每次消费者在消费之前都去尝试连接生产者测试下是否连接成功,效率就会变得很低。

Kafka使用zk的分布式协调服务,将生产者,消费者,消息储存(broker,用于存储信息,消息读写等)结合在一起。同时借助zk,kafka能够将生产者,消费者和broker在内的所有组件在无状态的条件下建立起生产者和消费者的订阅关系,实现生产者的负载均衡。

1. broker在zk中注册

kafka的每个broker(相当于一个节点,相当于一个机器)在启动时,都会在zk中注册,告诉zk其brokerid,在整个的集群中,broker.id/brokers/ids,当节点失效时,zk就会删除该节点,就很方便的监控整个集群broker的变化,及时调整负载均衡。

2. topic在zk中注册

在kafka中可以定义很多个topic,每个topic又被分为很多个分区。一般情况下,每个分区独立在存在一个broker上,所有的这些topic和broker的对应关系都有zk进行维护

3. consumer(消费者)在zk中注册

  1)注册新的消费者,当有新的消费者注册到zk中,zk会创建专用的节点来保存相关信息,路径ls /consumers/{group_id}/  [ids,owners,offset],Ids:记录该消费分组有几个正在消费的消费者,Owmners:记录该消费分组消费的topic信息,Offset:记录topic每个分区中的每个offset

  2)监听消费者分组中消费者的变化 ,监听/consumers/{group_id}/ids的子节点的变化,一旦发现消费者新增或者减少及时调整消费者的负载均衡。

4. kafka的应用场景

  1)日志收集:一个公司的各种应用都可以作为生产者将日志吐到kafka,再由hbase,solr,es等来消费kafka的日志作统计,查错。
  2)消息系统:解耦和生产者和消费者、缓存消息等。

  3)用户活动跟踪:Kafka经常被用来记录web用户或者app用户的各种活动,如浏览网页、搜索、点击等活动,这些活动信息被各个服务器发布到kafka的topic中,然后订阅者通过订阅这些topic来做实时的监控分析,或者装载到hadoop、数据仓库中做离线分析和挖掘。

  4)运营指标:Kafka也经常用来记录运营监控数据。包括收集各种分布式应用的数据,生产各种操作的集中反馈,比如报警和报告