帧同步技术是早期RTS游戏常用的一种同步技术,本篇文章要给大家介绍的是RTX游戏中帧同步实现,帧同步是一种前后端数据同步的方式,一般应用于对实时性要求很高的网络游戏,想要了解更多帧同步的知识,继续往下看。

一.背景

帧同步技术是早期RTS游戏常用的一种同步技术。与状态同步不同的是,帧同步只同步操作,其大部分游戏逻辑都在客户端上实现,服务器主要负责广播和验证操作,有着逻辑直观易实现、数据量少、可重播等优点。

部分PC游戏如帝国时代、魔兽争霸3、星际争霸等,Host(服务器或某客户端)只当接收到所有客户端在某帧输入数据后,才会继续执行,等待直至超时认为该客户端掉线。很明显,当部分客户端因网络或设备问题无法及时上传操作数据,会影响其它客户端的表现,造成不好的游戏体验。考虑到游戏公平竞争性,这种需要等待的机制是必需的,但并不符合手游网络环境的需求。为此,需要使用“乐观”模式,即是Host采集客户端上传操作并按固定频率广播已接收到的操作数据,不在乎部分客户端的操作数据是否上传成功,且不会影响到其它客户端的游戏表现,如图1所示。
 


Unity rtsp rtmp推流 unity rts游戏_Unity rtsp rtmp推流


二.剖析Unity3D

帧同步技术最基础的核心概念就是相同输入,经过相同计算过程,得出相同计算结果。按照该概念,下面将简单描述Unity3D实现帧同步时所需要改造的一些方面,Unity3D中脚本生命周期流程图如图2所示。
 


Unity rtsp rtmp推流 unity rts游戏_xml_02


帧同步需要避免使用本地计时器相关数值。因此,使用Unity3D实现帧同步的过程所需注意的几点:

1. 禁用Time类相关属性及函数,如Time.deltaTime等。而使用帧时间(第N帧 X 固定频率)

2. 禁用Invoke()等函数

3. 避免在Awake()、Start()、Update()、LateUpdate()、OnDestroy()等函数中实现影响游戏逻辑判断的代码

4. 避免使用Unity3D自带物理引擎

5. 避免使用协程Coroutine

三.具体实现

对于本文的实现,有如下定义:

关键帧:服务器按固定频率广播的操作数据帧,使用唯一ID标识,主要包括客户端输入数据或服务器发送的关键信息(例如游戏开始或结束等消息)

填充帧:由于设备性能和网络延迟等原因,服务器广播频率不可能达到客户端的更新频率。若只使用关键帧来驱动游戏运作,就会造成游戏卡顿,影响体验。因此,除关键帧外,客户端需要自行添加若干空数据帧,以使游戏表现更为流畅

逻辑帧更新时间:客户端执行一帧所需时间,可根据设备性能和网络环境等因素动态变化

服务器帧更新时间:服务器广播帧数据的固定频率,一般用于帧间隔时间差的逻辑计算

3.1 主循环

帧同步要求相同的计算过程,这就涉及到两个方面,其一是顺序一致,Unity3D主循环不可控,需自定义游戏循环,统一管理游戏对象以及脚本的执行,确保所有对象更新与逻辑执行顺序完全一致。另一方面是结果一致,凡有浮点数参与的逻辑计算需要特殊处理。

1. class MainLoopManager : MonoBehaviour
2. {
3.     bool m_start;
4.     int m_logicFrameDelta;//逻辑帧更新时间
5.     int m_logicFrameAdd;//累积时间
6. 
7.     void Loop()
8.     {
9.         ......//遍历所有脚本
10.     }
11. 
12.     void Update()
13.     {
14.         if (!m_start)
15.             return;
16. 
17.         if (m_logicFrameAdd < m_logicFrameDelta)
18.         {
19.             m_logicFrameAdd += (int)(Time.deltaTime * 1000);
20.         }
21.         else
22.         {
23.             int frameNum = 0;
24.             while(CanUpdateNextFrame() || IsFillFrame())
25.             {
26.                 Loop();//主循环
27.                 frameNum++;
28.                 if (frameNum > 10)
29.                 {
30.                     //最多连续播放10帧
31.                     break;
32.                 }
33.             }
34.             m_logicFrameAdd = 0;
35.         }
36.     }
37. 
38.     bool CanUpdateNextFrame();//是否可以更新至下一关键帧
39.     bool IsFillFrame();//当前逻辑帧是否为填充帧
40. }


复制代码

3.2 自定义MonoBehaviour

Unity3D脚本生命周期中部分函数、Invoke、Coroutine调用时机与本地更新相关,并不满足帧同步机制的要求。我们通过继承MonoBehaviour类来实现上述函数和功能需求,并使所有涉及逻辑计算的组件都继承该自定义类。
 


  1. class CustomBehaviour : MonoBehaviour
  2. {
  3.     bool m_isDestroy = false;

  4.     public bool IsDestroy
  5.     {
  6.         get { returnm_isDestroy; }
  7.     }

  8.     public virtual void OnDestroy() {};
  9.      
  10.     public void Destroy(UnityEngine.Objectobj)
  11.     {

  12.         ......//销毁游戏对象

  13.     }
  14. }


复制代码

3.2.1 Update()与LateUpdate()

从可控性和高效性两方面来看,不建议采用逐一遍历游戏对象获取CustomBehaviour的方式去调用Update()与LateUpdate(),而是单独使用列表来管理。
 

1. delegate void FrameUpdateFunc();
2. class FrameUpdate
3. {
4.     public FrameUpdateFunc func;
5.     public GameObject ower;
6.     public CustomBehaviour behaviour;
7. }
8. 
9. class MainLoopManager : MonoBehaviour
10. {
11.     ......
12.     List m_frameUpdateList;
13.     List m_frameLateUpdateList;nn
14. 
15.     public RegisterFrameUpdate(FrameUpdateFunc func, GameObject owner)
16.     public UnRegisterFrameUpdate(FrameUpdateFunc func, GameObject owner)
17.     public RegisterFrameLateUpdate(FrameUpdateFunc func, GameObject owner)
18.     public UnRegisterFrameLateUpdate(FrameUpdateFunc func, GameObject owner)
19. void Loop()
20.     {
21.         //先遍历m_frameUpdateList
22.         //再遍历m_frameLateUpdateList
23.     }
24.     ......
25. }


复制代码

采取添加删除的方式,对组件是否需要执行Update()与LateUpdate()进行动态地管理,除了具有相对的灵活性,也保证了执行效率。

3.2.2 Invoke相关函数

Invoke、 InvokeRepeating、 CancelInvoke等函数需要使用C#中的反射机制,根据object对象obj和函数名methodName来获取MethodInfo如:
 


1. var type = obj.GetType();
2. MethodInfo method = type.GetMethod(methodName);


复制代码

通过接口封装,组成相关数据(InvokeData),放入列表等待执行。
 

1. class InvokeData
2. {
3.     public object obj;
4.     public MethodInfo methodInfo;
5.     public int delayTime;
6.     public int repeatRate;
7.     public int repeatFrameAt;
8.     public bool isCancel = false;
9. }


复制代码

如上述结构,delayTime用于记录延迟执行时间,repeatRate代表重复调用的频率,repeatFrameAt则标记上次调用发生的帧序号,而isCancel标记Invoke是否被取消。最后,统一使用MethodBase.Invoke(objectobj, object[] parameters)执行调用。

1. class MainLoopManager : MonoBehaviour
2. {
3.     ......
4.     List m_invokeList;
5. 
6.     void Loop()
7.     {
8.         //先遍历m_frameUpdateList
9.         //再遍历m_frameLateUpdateList
10.         //遍历m_invokeList,并根据相关属性分别进行Invoke、 InvokeRepeating、CancelInvoke
11.     }
12.     ......
13. }

复制代码

3.2.3 协程Coroutine

协程Coroutine较复杂,必需采用的情况较少,本文方案未实现协程Coroutine功能,而是避免使用。

3.2.4 Destroy相关

在Destroy游戏对象或组件后,OnDestroy()将在下一帧执行。因此,需要采取可控的方式代替OnDestroy()函数完成资源的释放。
 

    1. class CustomBehaviour : MonoBehaviour
    2. {
    3.     bool m_isDestroy = false;
    4.     public bool IsDestroy
    5.     {
    6.         set { m_isDestroy = value; }
    7.         get { return m_isDestroy; }
    8.     }
    9.     public virtual void DoDestroy() {};
    10.     public void Destroy(UnityEngine.Object obj)
    11.     {
    12.         if (obj.GetType() == typeof(GameObject))
    13.         {
    14.             GameObject go = (GameObject)obj;
    15.             CustomBehaviour behaviours = go.GetComponents();
    16.             for (int i = 0; i < behaviours.Length; i++)
    17.             {
    18.                 behaviours[i].IsDestroy = true;
    19.                 behaviours[i].DoDestroy();
    20.             }
    21.         }
    22.         else if (obj.GetType() == typeof(CustomBehaviour))
    23.         {
    24.             CustomBehaviour behaviour = (CustomBehaviour)obj;
    25.             behaviour.IsDestroy = true;
    26.             behaviour.DoDestroy();
    27.         }
    28.         UnityEngine.Object.Destroy(obj);
    29.     }
    30. }


    复制代码

    3.3 Time类与随机数

    帧同步游戏逻辑所有涉及时间的计算都应采用帧时间,即:当前帧序列数 * 服务器帧更新时间 /(填充帧数 + 1),而每帧随机数计算都由服务器下发种子来控制。如下:
     


      1. class MainLoopManager : MonoBehaviour
      2. {
      3.     .......
      4.     int m_serverFrameDelta;//毫秒
      5.     int m_curFrameIndex;
      6.     int m_fillFrameNum;
      7.     int m_serverRandomSeed;
      8. 
      9.     public int serverRandomSeed
      10.     {
      11.         get { return m_serverRandomSeed; }
      12.     }
      13.     public int curFrameIndex
      14.     {
      15.         get { return m_curFrameIndex; }
      16.     }
      17.     public static int curFrameTime
      18.     {
      19.         return m_curFrameIndex * m_serverFrameDelta / (1 + m_fillFrameNum);
      20.     }
      21.     public static int deltaFrameTime
      22.     {
      23.         return m_serverFrameDelta / (1 + m_fillFrameNum);
      24.     }
      25.     .......
      26. }


      复制代码

      可写入CustomBehaviour中,便于自定义Time类的调用,避免误用Unity3D的Time类,Random类同理。
       

      1. class CustomBehaviour : MonoBehaviour
      2. {
      3.     protected class Time
      4.     {
      5.         public static Fix time
      6.         {
      7.             get { return (Fix)MainLoopManager.curFrameTime / 1000; }
      8.         }
      9. 
      10.         public static Fix deltaTime
      11.         {
      12.             get { return (Fix)MainLoopManager.deltaFrameTime / 1000; }
      13.         }
      14.     }
      15. 
      16.     protected class Random
      17.     {
      18.         public static Fix Range(Fix min, Fix max)
      19.         {
      20.             Fix diff = max - min;
      21.             Fix seed = MainLoopManager.serverRandomSeed;
      22.             return min + (int)FixMath.Round(diff * (seed / 100));
      23.         }
      24.     }
      25. }


      复制代码

      其中Fix是定点数,3.4小节会简单描述如何将定点数运用在Unity3D中。本文实现中约定随机种子范围在0-100之间,并采用简单的计算方式。如有特殊需求,自行实现。

      3.4 定点数

      客户端必须保证对网络帧操作的运算过程和结果一致,然而不同系统平台对浮点数的处理有差别,即便差别甚微,也会造成“蝴蝶效应”,导致不同步现象出现。绝大多数情况下,只需要对游戏对象方位进行定点数改造即可。而Unity3D并非开源游戏引擎,无法对底层transform的position和rotation进行修改。因此,逻辑层计算时需要使用到自定义以定点数为基础的position和rotation,并在每次循环结束之前,将自定义的方位逻辑计算之后所得信息转化Unity3D transform,以便Unity3D更新表现层。使用Unity3D的协同功能Coroutine以及WaitForEndOfFrame()可满足上述需求,即在逻辑层计算完成后,在Unity3D渲染之前更新底层transform的position和rotation。

      3.5 网络波动

      帧同步机制下,玩家输入发送到网络,所有响应都必须要等网络逻辑帧才能进行处理。理想环境下,网络帧操作接收到的频率是固定的,能保证客户端表现正常不卡顿。但事实是,绝大多数情况下网络都是不稳定的,时快时慢难以预测。最简单的方案就是建立一个网络逻辑帧的缓冲区,设置一个缓冲区上限,当存入缓存区的帧数满足上限之后,按照固定频率播放。若缓冲区变空,等待其重新填满。通过累积网络逻辑帧延迟,平均分布到固定频率,平滑处理了网络波动造成的卡顿。

      3.6 丢帧处理

      由于TCP的丢包重传机制会导致较大的延迟,大多数情况下,帧同步都采用UDP协议进行网络通信,这就意味着需要自行解决丢包问题。

      预防:关键帧数据包里携带前面两帧的数据,可大大降低丢包率,但会带来冗余的增加。因此,值得注意的是不能使用UDP数据包过大,否则部分路由器会在组合UPD分组时发生错误,建议不超过Internet标准MTU尺寸576byte。

      补救:虽然上述方案能起到预防丢帧的作用,仍然无法避免丢帧问题。在出现丢帧问题时,需要客户端根据所需帧序号主动向服务器请求关键帧,包括单帧请求和批量帧请求。为了保证能够获取到所需关键帧,建议采用TCP协议。

      四.结束语

      上述内容都是基于《全民XXX》帧同步机制,是对实现过程中所面临难题的总结。在此分享,希望对他人有所帮助。由于作者技术和写作水平有限,若有更好的意见或错误的地方,欢迎指导。