学习用python写爬虫有几天了,下面写一个小爬虫验证下学习成果吧。
本文适合小白食用,各位大佬您就图个乐~Tip:本文仅供学习与交流,切勿用于非法用途!!!
目录
- 一、网页分析
- 二、撸起袖子写代码
- 爬取
- 解析
- 储存
- 多进程
- 三、结束
一、网页分析
爬取贝壳网石家庄二手房信息,先打开链接 https://sjz.ke.com/ershoufang/
。
不添加筛选条件,发现总共有42817套房子。我们点击第二页,再查看链接变成了https://sjz.ke.com/ershoufang/pg2/
。所以,可发现/pg{i}
,i就是页码。经过辣条君体育老师教授的数学,数了一下,一页30个,最多可选100页。
所以最多可爬取3000套房产信息,距离上面给出的4万多差的还很远,于是尝试把pg{i}
的那个i人为改变一下,点击回车请求一下。
https://sjz.ke.com/ershoufang/pg200/
https://sjz.ke.com/ershoufang/pg300/
发现这两个请求,返回房产信息数据都一样。都是第100页的信息,于是乎,得出结论。通过贝壳网web端,查看某一条件下的房产信息,最多可以查看3000套
。害,最多才能买3000套,有钱花不出去的感觉真难受啊~ 逃:)~~
所以呢,我们增加一些条件,比如,满五唯一,2室的。请求之~
发现链接变成了https://sjz.ke.com/ershoufang/pg2mw1l2/
。mw1l2
这个玩意应该筛选条件。看到只有2399套,欧克,咱们就爬它了。
二、撸起袖子写代码
麻雀虽小五脏俱全,本爬虫设计三个部分,爬取,解析,储存
。
爬取
爬取利用requests
库,比python内置库urllib
要好用很多。
import requests
def get_a_page(url):
result = requests.get(url)
print(result.text)
if __name__ == '__main__':
for i in range(1, 101):
get_a_page(f'https://sjz.ke.com/ershoufang/pg{i}mw1l2/')
for循环打印返回数据,发现没问题。其实i循环到81就好了,毕竟咱们知道了,只有不到2400套嘛。
解析
解析使用pyquery
,这个库使用起来类似于Jquery。完整API,https://pythonhosted.org/pyquery/api.html
。还有一个解析库`bs4,下次再尝试。
发现读取如图所示ul
里面一个div
就可以拿到我们想要的数据。
import requests
from pyquery import PyQuery as pq
import json
def get_a_page(url):
result = requests.get(url)
doc = pq(result.text)
ul = doc('.sellListContent')
divs = ul.children('.clear .info.clear').items()
for div in divs:
count += 1
title = div.children('.title a').text()
place = div.children('.address .flood .positionInfo a').text()
msg = div.children('.address .houseInfo').text()
price = div.children('.address .priceInfo .totalPrice span').text()
per_meter = div.children('.address .priceInfo .unitPrice').attr('data-price')
dict = {
'title': title,
'place': place,
'msg': msg,
'price': price,
'per_meter': per_meter
}
print(str(count) + ':' + json.dumps(dict, ensure_ascii=False))
代码如上,pyquery 的children
方法是查找子标签,find
方法是找子孙标签,此处我们只需要找下一代就好。然后通过text
找到标签所包含的文本。attr
是获取属性内容的,因为那个per_meter
从属性中获取比较简单,标签中的内容还包含了“元/平米”。
储存
本次我们直接储存到csv
中,一种类似于excel
的文件格式。利用的是pandas
库。
完整代码如下:
import requests
from pyquery import PyQuery as pq
import json
import pandas as pd
columns = ['title', 'msg', 'price', 'per_meter']
# 爬取某网页
def get_a_page(url):
result = requests.get(url)
doc = pq(result.text)
ul = doc('.sellListContent')
divs = ul.children('.clear .info.clear').items()
count = 0
titles = []
places = []
msgs = []
prices = []
per_meters = []
for div in divs:
count += 1
title = div.children('.title a').text()
place = div.children('.address .flood .positionInfo a').text()
msg = div.children('.address .houseInfo').text()
price = div.children('.address .priceInfo .totalPrice span').text()
per_meter = div.children('.address .priceInfo .unitPrice').attr('data-price')
dict = {
'title': title,
'place': place,
'msg': msg,
'price': price,
'per_meter': per_meter
}
titles.append(title)
places.append(place)
msgs.append(msg)
prices.append(price)
per_meters.append(per_meter)
print(str(count) + ':' + json.dumps(dict, ensure_ascii=False))
datas={
'title': titles,
'place': places,
'msg': msgs,
'price': prices,
'per_meter': per_meters
}
df = pd.DataFrame(data=datas, columns=columns)
df.to_csv('sjz.csv', mode='a', index=False, header=False)
if __name__ == '__main__':
for i in range(1, 101):
get_a_page(f'https://sjz.ke.com/ershoufang/pg{i}mw1l2/')
多进程
由于get_a_page
函数要运行100次,有点小慢,所以利用多进程加快速度,这部分代码,请直接copy。
将主函数改成如下所示
from multiprocessing.pool import Pool
if __name__ == '__main__':
pool = Pool(5)
group = ([f'https://sjz.ke.com/ershoufang/pg{x}mw1l2/' for x in range(1, 101)])
pool.map(get_a_page,group)
pool.close()
pool.join()
三、结束
查看下效果:
效果还可以。有人会说,为什么不把msg信息拆分一下,分别储存楼层、几室几厅、建筑年代等等多好。刚开始,我是那么做的,结果发现这个msg数据那几项不是必填项,有的建筑年代、楼层什么的房主不填写,索性就整个拿过来了。
辣条君的第一个爬虫就这样结束了。虽然简单,但是写完,还是有点小小的满足感。今后还会继续学习爬虫,写一些博客发出来。小伙伴们,点个赞再走嘛~