一、压缩的概述

1)压缩的好处和坏处

压缩的优点:以减少磁盘IO、减少磁盘存储空间。

压缩的缺点:增加CPU开销。

2)压缩原则

(1)运算密集型的Job,少用压缩

(2)IO密集型的Job,多用压缩

二、压缩算法对比介绍

压缩格式

Hadoop自带?

算法

文件扩展名

是否可切片

换成压缩格式后,原来的程序是否需要修改

DEFLATE

是,直接使用

DEFLATE

.deflate

和文本处理一样,不需要修改

Gzip

是,直接使用

DEFLATE

.gz

和文本处理一样,不需要修改

优点:压缩率比较高; 

缺点:不支持Split;压缩/解压速度一般;

bzip2

是,直接使用

bzip2

.bz2

和文本处理一样,不需要修改

优点:压缩率高;支持Split; 

缺点:压缩/解压速度慢。

LZO

否,需要安装

LZO

.lzo

需要建索引,还需要指定输入格式

优点:压缩/解压速度比较快;支持Split;

缺点:压缩率一般;想支持切片需要额外创建索引。

Snappy

是,直接使用

Snappy

.snappy

和文本处理一样,不需要修改

优点:压缩和解压缩速度快; 

缺点:不支持Split;压缩率一般;

三、压缩性能

压缩算法

原始文件大小

压缩文件大小

压缩速度

解压速度

gzip

8.3GB

1.8GB

17.5MB/s

58MB/s

bzip2

8.3GB

1.1GB

2.4MB/s

9.5MB/s

LZO

8.3GB

2.9GB

49.3MB/s

74.6MB/s

Snappy

250 MB/s

500 MB/s

四、压缩位置选择

hadoop压缩方式 hadoop压缩的主要作用_hadoop压缩方式

 五、压缩参数配置

压缩格式

对应的编码/解码器

DEFLATE

org.apache.hadoop.io.compress.DefaultCodec

gzip

org.apache.hadoop.io.compress.GzipCodec

bzip2

org.apache.hadoop.io.compress.BZip2Codec

LZO

com.hadoop.compression.lzo.LzopCodec

Snappy

org.apache.hadoop.io.compress.SnappyCodec

六、参数配置

参数

默认值

阶段

建议

io.compression.codecs   

(在core-site.xml中配置)

无,这个需要在命令行输入hadoop checknative查看

输入压缩

Hadoop使用文件扩展名判断是否支持某种编解码器

mapreduce.map.output.compress(在mapred-site.xml中配置)

false

mapper输出

这个参数设为true启用压缩

mapreduce.map.output.compress.codec(在mapred-site.xml中配置)

org.apache.hadoop.io.compress.DefaultCodec

mapper输出

企业多使用LZO或Snappy编解码器在此阶段压缩数据

mapreduce.output.fileoutputformat.compress(在mapred-site.xml中配置)

false

reducer输出

这个参数设为true启用压缩

mapreduce.output.fileoutputformat.compress.codec(在mapred-site.xml中配置)

org.apache.hadoop.io.compress.DefaultCodec

reducer输出

使用标准工具或者编解码器,如gzip和bzip2

七、压缩实操案例

1.Map输出端采用压缩

public class WordCountDriver {

	public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {

		Configuration conf = new Configuration();

		// 开启map端输出压缩
		conf.setBoolean("mapreduce.map.output.compress", true);

		// 设置map端输出压缩方式
		conf.setClass("mapreduce.map.output.compress.codec", BZip2Codec.class,CompressionCodec.class);

		Job job = Job.getInstance(conf);

		job.setJarByClass(WordCountDriver.class);

		job.setMapperClass(WordCountMapper.class);
		job.setReducerClass(WordCountReducer.class);

		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(IntWritable.class);

		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(IntWritable.class);

		FileInputFormat.setInputPaths(job, new Path(args[0]));
		FileOutputFormat.setOutputPath(job, new Path(args[1]));

		boolean result = job.waitForCompletion(true);

		System.exit(result ? 0 : 1);
	}
}

2.Reduce输出端采用压缩

public class WordCountDriver {

	public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
		
		Configuration conf = new Configuration();
		
		Job job = Job.getInstance(conf);
		
		job.setJarByClass(WordCountDriver.class);
		
		job.setMapperClass(WordCountMapper.class);
		job.setReducerClass(WordCountReducer.class);
		
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(IntWritable.class);
		
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(IntWritable.class);
		
		FileInputFormat.setInputPaths(job, new Path(args[0]));
		FileOutputFormat.setOutputPath(job, new Path(args[1]));
		
		// 设置reduce端输出压缩开启
		FileOutputFormat.setCompressOutput(job, true);

		// 设置压缩的方式
	    FileOutputFormat.setOutputCompressorClass(job, BZip2Codec.class); 
//	    FileOutputFormat.setOutputCompressorClass(job, GzipCodec.class); 
//	    FileOutputFormat.setOutputCompressorClass(job, DefaultCodec.class); 
	    
		boolean result = job.waitForCompletion(true);
		
		System.exit(result?0:1);
	}
}