Eratosthenes 筛选求质数 就是筛选出小于N的所有质数。
说明除了自身之外,无法被其它整数整除的数称之为质数,要求质数很简单,但如何快速的
求出质数则一直是程式设计人员与数学家努力的课题,在这边介绍一个着名的Eratosthenes求质
数方法。
解法
首先知道这个问题可以使用回圈来求解,将一个指定的数除以所有小于它的数,若可以
整除就不是质数,然而如何减少回圈的检查次数?如何求出小于N的所有质数?
首先假设要检查的数是N好了,则事实上只要检查至N的开根号就可以了,道理很简单,假设
AB = N,如果A大于N的开根号,则事实上在小于A之前的检查就可以先检查到B这个数可以整
除N。不过在程式中使用开根号会精确度的问题,所以可以使用ii <= N进行检查,且执行更快。
再来假设有一个筛子存放1~N,例如:
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 … N
先将2的倍数筛去: 2 3 5 7 9 11 13 15 17 19 21 … N
再将3的倍数筛去: 2 3 5 7 11 13 17 19 … N
再来将5的倍数筛去,再来将7的质数筛去,再来将11的倍数筛去…,如此进行到最后留下的
数就都是质数,这就是Eratosthenes筛选方法(Eratosthenes Sieve Method)。
检查的次数还可以再减少,事实上,只要检查6n+1与6n+5就可以了,也就是直接跳过2与3的倍
数,使得程式中的if的检查动作可以减少。
#include <stdio.h>
#include <stdlib.h>
#define N 1000
int main(void) {
int i, j;
int prime[N+1];
for(i = 2; i <= N; i++)
prime[i] = 1;//所有数初始化为1
for(i = 2; i*i < N; i++) { // 这边可以改进,
if(prime[i] == 1) {
//j=2*i,要从i的两倍开始,不然肯定对i取余不会得0.
//先将i=2的倍数筛选出来,然后将后面的质数一个一个筛选出来。
for(j = 2*i; j <= N; j++) {
if(j % i == 0 && prime[j] != 0) //(&& prime[j] != 0)减少重复删选。
prime[j] = 0;
}
}
}
for(i = 2; i < N; i++) {
if(prime[i] == 1) {
printf("%4d ", i);
if(i % 16 == 0)
printf("\n");
}
}
printf("\n");
return 0;
}
完美数:
说明如果有一数n,其真因数(Proper factor)的总和等于n,则称之为完美数(Perfect Number),
例如以下几个数都是完美数
6 = 1 + 2 + 3
28 = 1 + 2 + 4 + 7 + 14
496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248
程式基本上不难,第一眼看到时会想到使用回圈求出所有真因数,再进一步求因数和,不过若n值很大,则此法会花费许多时间在回圈测试上,十分没有效率,例如求小于10000的所有完美数 。
解法如何求小于10000的所有完美数?并将程式写的有效率?基本上有三个步骤:
求出一定数目的质数表
利用质数表求指定数的因式分解
利用因式分解求所有真因数和,并检查是否为完美数
#include <stdio.h>
#include <stdlib.h>
#define N 1000
#define P 10000
int prime(int*); // 求质数表
int factor(int*, int, int*); // 求factor
int fsum(int*, int); // sum ot proper factor
int main(void) {
int ptable[N+1] = {0}; // 储存质数表
int fact[N+1] = {0}; // 储存因式分解结果
int count1, count2, i;
count1 = prime(ptable);
for(i = 0; i <= P; i++) {
count2 = factor(ptable, i, fact);
if(i == fsum(fact, count2))
printf("Perfect Number: %d\n", i);
}
printf("\n");
return 0;
}
int prime(int* pNum) {
int i, j;
int prime[N+1];
for(i = 2; i <= N; i++)
prime[i] = 1;
for(i = 2; i*i <= N; i++) {
if(prime[i] == 1) {
for(j = 2*i; j <= N; j++) {
if(j % i == 0)
prime[j] = 0;
}
}
}
for(i = 2, j = 0; i < N; i++) {
if(prime[i] == 1)
pNum[j++] = i;
}
return j;
}
int factor(int* table, int num, int* frecord) {
int i, k;
for(i = 0, k = 0; table[i] * table[i] <= num;) {
if(num % table[i] == 0) {
frecord[k] = table[i];
k++;
num /= table[i];
}
else
i++;
}
frecord[k] = num;
return k+1;
}
int fsum(int* farr, int c) {
int i, r, s, q;
i = 0;
r = 1;
s = 1;
q = 1;
while(i < c) {
do {
r *= farr[i];
q += r;
i++;
} while(i < c-1 && farr[i-1] == farr[i]);
s *= q;
r = 1;
q = 1;
}
return s / 2;
}