LDA算法的主要优点有:
- 在降维过程中可以使用类别的先验知识经验,而像PCA这样的无监督学习则无法使用类别先验知识。
- LDA在样本分类信息依赖均值而不是方差的时候,比PCA之类的算法较优。
LDA算法的主要缺点有:
- LDA不适合对非高斯分布样本进行降维,PCA也有这个问题。
- LDA降维最多降到类别数k-1的维数,如果我们降维的维度大于k-1,则不能使用LDA。当然目前有一些LDA的进化版算法可以绕过这个问题。
- LDA在样本分类信息依赖方差而不是均值的时候,降维效果不好。
- LDA可能过度拟合数据。
PCA算法的主要优点有:
- 仅仅需要以方差衡量信息量,不受数据集以外的因素影响。
- 各主成分之间正交,可消除原始数据成分间的相互影响的因素。
- 计算方法简单,主要运算是特征值分解,易于实现。
- 当数据受到噪声影响时,最小的特征值所对应的特征向量往往与噪声有关,舍弃能在一定程度上起到降噪的效果。
PCA算法的主要缺点有:
- 主成分各个特征维度的含义具有一定的模糊性,不如原始样本特征的解释性强。
- 方差小的非主成分也可能含有对样本差异的重要信息,因降维丢弃可能对后续数据处理有影响。
LDA与PCA
相同点:
- 两者均可以对数据进行降维。
- 两者在降维时均使用了矩阵特征分解的思想。
- 两者都假设数据符合高斯分布。
不同点:
- LDA是有监督的降维方法,而PCA是无监督的降维方法。(LDA输入的数据是带标签的,PCA输入的数据是不带标签的)
- LDA降维最多降到类别数k-1的维数,而PCA没有这个限制。(PCA采用的是最大的特征所对应的特征向量来进行降维的处理。降到的维数和选择的最大特征的个数有关)
- LDA除了可以用于降维,还可以用于分类。(降维后得到一个新的样品数据,要确定某一个未知的样本属于那一类,对该样本进行同样的线性变换,根据其投影到的位置来进行分来(判别分析问题?))
- LDA选择分类性能最好的投影方向,而PCA选择样本点投影具有最大方差的方向。