mapreduce只能用java编写原因 mapreduce只支持java语言编写_数据


Java

java可以说是大数据最基础的编程语言,据我这些年的经验,我接触的很大一部分的大数据开发都是从JaveWeb开发转岗过来的(当然也不是绝对我甚至见过产品转岗大数据开发的,逆了个天)。

一是因为大数据的本质无非就是海量数据的计算,查询与存储,后台开发很容易接触到大数据量存取的应用场景


mapreduce只能用java编写原因 mapreduce只支持java语言编写_数据_02


点击链接加入群聊【大数据学习交流群】:想要在大数据这个领域汲取养分,让自己壮大成长。分享方向,行动以前先分享下一个大数据交流分享资源,欢迎想学习,想转行的,进阶中你加入学习。?

二就是java语言本事了,天然的优势,因为大数据的组件很多都是用java开发的像HDFS,Yarn,Hbase,MR,Zookeeper等等,想要深入学习,填上生产环境中踩到的各种坑,必须得先学会java然后去啃源码。

说到啃源码顺便说一句,开始的时候肯定是会很难,需要对组件本身和开发语言都有比较深入的理解,熟能生巧慢慢来,等你过了这个阶段,习惯了看源码解决问题的时候你会发现源码真香。

Scala

scala和java很相似都是在jvm运行的语言,在开发过程中是可以无缝互相调用的。Scala在大数据领域的影响力大部分都是来自社区中的明星Spark和kafka,这两个东西大家应该都知道(后面我会有文章多维度介绍它们),它们的强势发展直接带动了Scala在这个领域的流行。

Python和Shell

shell应该不用过多的介绍非常的常用,属于程序猿必备的通用技能。python更多的是用在数据挖掘领域以及写一些复杂的且shell难以实现的日常脚本。


mapreduce只能用java编写原因 mapreduce只支持java语言编写_数据_03


Java:大家都知道Java的方向有JavaSE、JavaEE、JavaME,学习大数据要学习那个方向呢?

只需要学习Java的标准版JavaSE就可以了,像Servlet、JSP、Tomcat、Struts、Spring、Hibernate,Mybatis都是JavaEE方向

的技术在大数据技术里用到的并不多,只需要了解就可以了,当然Java怎么连接数据库还是要知道的,像JDBC一定要掌握一

下,有同学说Hibernate或Mybites也能连接数据库啊,为什么不学习一下,我这里不是说学这些不好,而是说学这些可能会用

你很多时间,到最后工作中也不常用,我还没看到谁做大数据处理用到这两个东西的,当然你的精力很充足的话,可以学学

Hibernate或Mybites的原理,不要只学API,这样可以增加你对Java操作数据库的理解,因为这两个技术的核心就是Java的反

射加上JDBC的各种使用。

Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会

有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学

会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。


mapreduce只能用java编写原因 mapreduce只支持java语言编写_Java_04


好说完基础了,再说说还需要学习哪些大数据技术,可以按我写的顺序学下去。

Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件

HDFS、MapReduce和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapReduce是对

数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数

据的批处理。

YARN是体现Hadoop平台概念的重要组件有了它大数据生态体系的其它软件就能在hadoop上运行了,这样就能更好的利用

HDFS大存储的优势和节省更多的资源比如我们就不用再单独建一个spark的集群了,让它直接跑在现有的hadoop yarn上面就可以了。

其实把Hadoop的这些组件学明白你就能做大数据的处理了,只不过你现在还可能对"大数据"到底有多大还没有个太清楚的概念,听我的别纠结这个。等以后你工作了就会有很多场景遇到几十T/几百T大规模的数据,到时候你就不会觉得数据大真好,越大越有你头疼的。当然别怕处理这么大规模的数据,因为这是你的价值所在,让那些个搞Javaee的php的html5的和

DBA的羡慕去吧。记住学到这里可以作为你学大数据的一个节点。

Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协

作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它

正常的run起来就可以了。

Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,

mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。

这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。

Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到

HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。

Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapReduce程序。有

的人说Pig那?它和Pig差不多掌握一个就可以了。

Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapReduce、Spark脚本,还能检查

你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会

喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。

Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用

来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。


mapreduce只能用java编写原因 mapreduce只支持java语言编写_Java_05


Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的

其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据

的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因

为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时

你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。

Spark:它是用来弥补基于MapReduce处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进

化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作

它,因为它们都是用JVM的。


:当然还是有很有可以提高的地方,比如学习下python,可以用它来编写网络爬虫。这样我们就可以自己造数据了,网络上的各种数据你高兴都可以下载到你的集群上去处理。

最后再学习下推荐、分类等算法的原理这样你能更好的与算法工程师打交通。这样你的公司就更离不开你了,大家都会对你喜欢的不要不要的。