这篇文章中我放弃了以往的model.fit()训练方法,改用model.train_on_batch方法。两种方法的比较:

  • model.fit():用起来十分简单,对新手非常友好
  • model.train_on_batch():封装程度更低,可以玩更多花样。

此外我也引入了进度条的显示方式,更加方便我们及时查看模型训练过程中的情况,可以及时打印各项指标。

🏡 我的环境:

  • 语言环境:Python3.6.5
  • 编译器:jupyter notebook
  • 深度学习环境:TensorFlow2.4.1

一、前期工作

设置GPU

如果使用的是CPU可以注释掉这部分的代码。

import tensorflow as tf

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    tf.config.experimental.set_memory_growth(gpus[0], True)  #设置GPU显存用量按需使用
    tf.config.set_visible_devicese_devices([gpus[0]],"GPU")

# 打印显卡信息,确认GPU可用
print(gpus)
[]
cd week\ 8
[Errno 2] No such file or directory: 'week 8'
/home/liangjie/test/Modelwhale/deep learning/week 8

导入数据

import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

import os,PIL,pathlib

#隐藏警告
import warnings
warnings.filterwarnings('ignore')

data_dir = "./365-7-data"
data_dir = pathlib.Path(data_dir)

image_count = len(list(data_dir.glob('*/*')))

print("图片总数为:",image_count)
图片总数为: 3400

数据预处理

加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset

#batch_size = 8
batch_size = 64
img_height = 224
img_width = 224

TensorFlow版本是2.2.0的同学可能会遇到module 'tensorflow.keras.preprocessing' has no attribute 'image_dataset_from_directory'的报错,升级一下TensorFlow就OK了。

"""
关于image_dataset_from_directory()的详细介绍可以参考文章:
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)
Found 3400 files belonging to 2 classes.
Using 2720 files for training.


2022-09-23 10:37:11.814218: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)
Found 3400 files belonging to 2 classes.
Using 680 files for validation.

我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。

class_names = train_ds.class_names
print(class_names)
['cat', 'dog']

再次检查数据

for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break
(64, 224, 224, 3)
(64,)
  • Image_batch是形状的张量(8, 224, 224, 3)。这是一批形状224x224x3的8张图片(最后一维指的是彩色通道RGB)。
  • Label_batch是形状(8,)的张量,这些标签对应8张图片

配置数据集

  • shuffle() : 打乱数据,关于此函数的详细介绍可以参考:https://zhuanlan.zhihu.com/p/42417456
  • prefetch() :预取数据,加速运行,其详细介绍可以参考我前两篇文章,里面都有讲解。
  • cache() :将数据集缓存到内存当中,加速运行
AUTOTUNE = tf.data.AUTOTUNE

def preprocess_image(image,label):
    return (image/255.0,label)

# 归一化处理
train_ds = train_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
val_ds   = val_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds   = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

如果报 AttributeError: module 'tensorflow._api.v2.data' has no attribute 'AUTOTUNE' 错误,就将 AUTOTUNE = tf.data.AUTOTUNE 更换为 AUTOTUNE = tf.data.experimental.AUTOTUNE,这个错误是由于版本问题引起的。

可视化数据

plt.figure(figsize=(15, 10))  # 图形的宽为15高为10

for images, labels in train_ds.take(1):
    for i in range(8):
        
        ax = plt.subplot(5, 8, i + 1) 
        plt.imshow(images[i])
        plt.title(class_names[labels[i]])
        
        plt.axis("off")

猫狗识别tensorflow 猫狗识别实验心得_tensorflow

构建VG-16网络

VGG优缺点分析:

  • VGG优点

VGG的结构非常简洁,整个网络都使用了同样大小的卷积核尺寸(3x3)和最大池化尺寸(2x2)。

  • VGG缺点

1)训练时间过长,调参难度大。2)需要的存储容量大,不利于部署。例如存储VGG-16权重值文件的大小为500多MB,不利于安装到嵌入式系统中。

结构说明:

  • 13个卷积层(Convolutional Layer),分别用blockX_convX表示
  • 3个全连接层(Fully connected Layer),分别用fcXpredictions表示
  • 5个池化层(Pool layer),分别用blockX_pool表示

VGG-16包含了16个隐藏层(13个卷积层和3个全连接层),故称为VGG-16

from tensorflow.keras import layers, models, Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout

def VGG16(nb_classes, input_shape):
    input_tensor = Input(shape=input_shape)
    # 1st block
    x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv1')(input_tensor)
    x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv2')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block1_pool')(x)
    # 2nd block
    x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv1')(x)
    x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv2')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block2_pool')(x)
    # 3rd block
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv1')(x)
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv2')(x)
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv3')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block3_pool')(x)
    # 4th block
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv1')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv2')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv3')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block4_pool')(x)
    # 5th block
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv1')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv2')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv3')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block5_pool')(x)
    # full connection
    x = Flatten()(x)
    x = Dense(4096, activation='relu',  name='fc1')(x)
    x = Dense(4096, activation='relu', name='fc2')(x)
    output_tensor = Dense(nb_classes, activation='softmax', name='predictions')(x)

    model = Model(input_tensor, output_tensor)
    return model

model=VGG16(1000, (img_width, img_height, 3))
model.summary()
2022-09-23 10:38:14.831037: W tensorflow/core/framework/cpu_allocator_impl.cc:82] Allocation of 411041792 exceeds 10% of free system memory.
2022-09-23 10:38:14.856563: W tensorflow/core/framework/cpu_allocator_impl.cc:82] Allocation of 411041792 exceeds 10% of free system memory.
2022-09-23 10:38:14.894736: W tensorflow/core/framework/cpu_allocator_impl.cc:82] Allocation of 411041792 exceeds 10% of free system memory.


Model: "model"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 input_1 (InputLayer)        [(None, 224, 224, 3)]     0         
                                                                 
 block1_conv1 (Conv2D)       (None, 224, 224, 64)      1792      
                                                                 
 block1_conv2 (Conv2D)       (None, 224, 224, 64)      36928     
                                                                 
 block1_pool (MaxPooling2D)  (None, 112, 112, 64)      0         
                                                                 
 block2_conv1 (Conv2D)       (None, 112, 112, 128)     73856     
                                                                 
 block2_conv2 (Conv2D)       (None, 112, 112, 128)     147584    
                                                                 
 block2_pool (MaxPooling2D)  (None, 56, 56, 128)       0         
                                                                 
 block3_conv1 (Conv2D)       (None, 56, 56, 256)       295168    
                                                                 
 block3_conv2 (Conv2D)       (None, 56, 56, 256)       590080    
                                                                 
 block3_conv3 (Conv2D)       (None, 56, 56, 256)       590080    
                                                                 
 block3_pool (MaxPooling2D)  (None, 28, 28, 256)       0         
                                                                 
 block4_conv1 (Conv2D)       (None, 28, 28, 512)       1180160   
                                                                 
 block4_conv2 (Conv2D)       (None, 28, 28, 512)       2359808   
                                                                 
 block4_conv3 (Conv2D)       (None, 28, 28, 512)       2359808   
                                                                 
 block4_pool (MaxPooling2D)  (None, 14, 14, 512)       0         
                                                                 
 block5_conv1 (Conv2D)       (None, 14, 14, 512)       2359808   
                                                                 
 block5_conv2 (Conv2D)       (None, 14, 14, 512)       2359808   
                                                                 
 block5_conv3 (Conv2D)       (None, 14, 14, 512)       2359808   
                                                                 
 block5_pool (MaxPooling2D)  (None, 7, 7, 512)         0         
                                                                 
 flatten (Flatten)           (None, 25088)             0         
                                                                 
 fc1 (Dense)                 (None, 4096)              102764544 
                                                                 
 fc2 (Dense)                 (None, 4096)              16781312  
                                                                 
 predictions (Dense)         (None, 1000)              4097000   
                                                                 
=================================================================
Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0
_________________________________________________________________

编译

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

  • 损失函数(loss):用于衡量模型在训练期间的准确率。
  • 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
  • 评价函数(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
model.compile(optimizer="adam",
              loss     ='sparse_categorical_crossentropy',
              metrics  =['accuracy'])

训练模型

from tqdm import tqdm
import tensorflow.keras.backend as K

#epochs = 5
epochs = 10
lr     = 1e-4

# 记录训练数据,方便后面的分析
# 生成训练中loss和acc的空列表
history_train_loss     = []
history_train_accuracy = []
# 生成验证中loss和acc的空列表
history_val_loss       = []
history_val_accuracy   = []


#按照epochs数循环
for epoch in range(epochs):
    #训练集长度
    train_total = len(train_ds)
     #验证集长度
    val_total   = len(val_ds)
    
    """
    total:预期的迭代数目
    ncols:控制进度条宽度
    mininterval:进度更新最小间隔,以秒为单位(默认值:0.1)
    """
    with tqdm(total=train_total, desc=f'Epoch {epoch + 1}/{epochs}',mininterval=1,ncols=100) as pbar:
        
        lr = lr*0.92
        K.set_value(model.optimizer.lr, lr)

        for image,label in train_ds:   
            """
            训练模型,简单理解train_on_batch就是:它是比model.fit()更高级的一个用法

            想详细了解 train_on_batch 的同学,
            可以看看我的这篇文章:https://www.yuque.com/mingtian-fkmxf/hv4lcq/ztt4gy
            """
            history = model.train_on_batch(image,label)

            train_loss     = history[0]
            train_accuracy = history[1]
            
            pbar.set_postfix({"loss": "%.4f"%train_loss,
                              "accuracy":"%.4f"%train_accuracy,
                              "lr": K.get_value(model.optimizer.lr)})
            pbar.update(1)
        history_train_loss.append(train_loss)
        history_train_accuracy.append(train_accuracy)
            
    print('开始验证!')
    
    with tqdm(total=val_total, desc=f'Epoch {epoch + 1}/{epochs}',mininterval=0.3,ncols=100) as pbar:

        for image,label in val_ds:      
            # 这里生成的是每一个batch的acc与loss
            history = model.test_on_batch(image,label)
            
            val_loss     = history[0]
            val_accuracy = history[1]
            
            pbar.set_postfix({"loss": "%.4f"%val_loss,
                              "accuracy":"%.4f"%val_accuracy})
            pbar.update(1)
        history_val_loss.append(val_loss)
        history_val_accuracy.append(val_accuracy)
            
    print('结束验证!')
    print("验证loss为:%.4f"%val_loss)
    print("验证准确率为:%.4f"%val_accuracy)
Epoch 1/10:   0%|                                                            | 0/43 [00:00<?, ?it/s]2022-09-23 10:39:52.660439: W tensorflow/core/framework/cpu_allocator_impl.cc:82] Allocation of 411041792 exceeds 10% of free system memory.
2022-09-23 10:39:52.685502: W tensorflow/core/framework/cpu_allocator_impl.cc:82] Allocation of 411041792 exceeds 10% of free system memory.
Epoch 1/10: 100%|██████████| 43/43 [12:24<00:00, 17.31s/it, loss=0.7042, accuracy=0.4844, lr=9.2e-5]


开始验证!


Epoch 1/10: 100%|█████████████████████| 11/11 [00:15<00:00,  1.39s/it, loss=0.6824, accuracy=0.6250]


结束验证!
验证loss为:0.6824
验证准确率为:0.6250


Epoch 2/10: 100%|█████████| 43/43 [12:05<00:00, 16.87s/it, loss=0.6253, accuracy=0.6250, lr=8.46e-5]


开始验证!


Epoch 2/10: 100%|█████████████████████| 11/11 [00:14<00:00,  1.33s/it, loss=0.7120, accuracy=0.5250]


结束验证!
验证loss为:0.7120
验证准确率为:0.5250


Epoch 3/10: 100%|█████████| 43/43 [12:12<00:00, 17.04s/it, loss=0.5318, accuracy=0.7812, lr=7.79e-5]


开始验证!


Epoch 3/10: 100%|█████████████████████| 11/11 [00:14<00:00,  1.32s/it, loss=0.6701, accuracy=0.7000]


结束验证!
验证loss为:0.6701
验证准确率为:0.7000


Epoch 4/10: 100%|█████████| 43/43 [12:19<00:00, 17.21s/it, loss=0.1956, accuracy=0.8906, lr=7.16e-5]


开始验证!


Epoch 4/10: 100%|█████████████████████| 11/11 [00:14<00:00,  1.28s/it, loss=0.2061, accuracy=0.9250]


结束验证!
验证loss为:0.2061
验证准确率为:0.9250


Epoch 5/10: 100%|█████████| 43/43 [12:16<00:00, 17.12s/it, loss=0.1581, accuracy=0.9688, lr=6.59e-5]


开始验证!


Epoch 5/10: 100%|█████████████████████| 11/11 [00:13<00:00,  1.25s/it, loss=0.0556, accuracy=0.9750]


结束验证!
验证loss为:0.0556
验证准确率为:0.9750


Epoch 6/10: 100%|█████████| 43/43 [12:10<00:00, 16.99s/it, loss=0.0447, accuracy=0.9844, lr=6.06e-5]


开始验证!


Epoch 6/10: 100%|█████████████████████| 11/11 [00:14<00:00,  1.28s/it, loss=0.0827, accuracy=0.9750]


结束验证!
验证loss为:0.0827
验证准确率为:0.9750


Epoch 7/10: 100%|█████████| 43/43 [12:11<00:00, 17.00s/it, loss=0.0484, accuracy=0.9844, lr=5.58e-5]


开始验证!


Epoch 7/10: 100%|█████████████████████| 11/11 [00:14<00:00,  1.27s/it, loss=0.0639, accuracy=0.9750]


结束验证!
验证loss为:0.0639
验证准确率为:0.9750


Epoch 8/10: 100%|█████████| 43/43 [12:14<00:00, 17.09s/it, loss=0.0398, accuracy=0.9688, lr=5.13e-5]


开始验证!


Epoch 8/10: 100%|█████████████████████| 11/11 [00:14<00:00,  1.31s/it, loss=0.0406, accuracy=0.9750]


结束验证!
验证loss为:0.0406
验证准确率为:0.9750


Epoch 9/10: 100%|█████████| 43/43 [12:20<00:00, 17.23s/it, loss=0.0134, accuracy=1.0000, lr=4.72e-5]


开始验证!


Epoch 9/10: 100%|█████████████████████| 11/11 [00:13<00:00,  1.27s/it, loss=0.0721, accuracy=0.9750]


结束验证!
验证loss为:0.0721
验证准确率为:0.9750


Epoch 10/10: 100%|████████| 43/43 [12:19<00:00, 17.21s/it, loss=0.0334, accuracy=1.0000, lr=4.34e-5]


开始验证!


Epoch 10/10: 100%|████████████████████| 11/11 [00:14<00:00,  1.28s/it, loss=0.0255, accuracy=0.9750]

结束验证!
验证loss为:0.0255
验证准确率为:0.9750
# 这是我们之前的训练方法。
# history = model.fit(
#     train_ds,
#     validation_data=val_ds,
#     epochs=epochs
# )

模型评估

epochs_range = range(epochs)

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, history_train_accuracy, label='Training Accuracy')
plt.plot(epochs_range, history_val_accuracy, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, history_train_loss, label='Training Loss')
plt.plot(epochs_range, history_val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
findfont: Font family ['sans-serif'] not found. Falling back to DejaVu Sans.
findfont: Generic family 'sans-serif' not found because none of the following families were found: SimHei

猫狗识别tensorflow 猫狗识别实验心得_python_02

from pyecharts.charts import *
import pyecharts.options as opts
from pyecharts.globals import ThemeType
loss = history_train_loss
val_loss = history_val_loss
acc = history_train_accuracy
val_acc = history_val_accuracy
line_loss = Line()
line_loss.add_xaxis([i for i in range(10)])
line_loss.add_yaxis('loss', loss, label_opts=opts.LabelOpts(is_show=False))
line_loss.add_yaxis('val_loss', val_loss, label_opts=opts.LabelOpts(is_show=False))
line_loss.set_global_opts(legend_opts=opts.LegendOpts(pos_top='5%',pos_left='20%'),
                    tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="line"))

line_acc = Line()
line_acc.add_xaxis([i for i in range(10)])
line_acc.add_yaxis('accuracy', acc, label_opts=opts.LabelOpts(is_show=False))
line_acc.add_yaxis('val_accuracy', val_acc, label_opts=opts.LabelOpts(is_show=False))
line_acc.set_global_opts(title_opts=opts.TitleOpts('模型训练过程效果记录', pos_left='center'),
                    legend_opts=opts.LegendOpts(pos_top='5%', pos_left='65%'),
                    yaxis_opts=opts.AxisOpts(is_scale=True),
                    tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="line"))

grid = Grid(init_opts=opts.InitOpts(theme=ThemeType.CHALK))
grid.add(line_loss,grid_opts=opts.GridOpts(pos_left='5%', pos_right='55%'))
grid.add(line_acc,grid_opts=opts.GridOpts(pos_left='55%', pos_right='5%'))
grid.render_notebook()
<div id="ea9a3c05acb34f55b20b2a3e278cb641" style="width:900px; height:500px;"></div>

猫狗识别tensorflow 猫狗识别实验心得_tensorflow_03

预测

import numpy as np

# 采用加载的模型(new_model)来看预测结果
plt.figure(figsize=(18, 3))  # 图形的宽为18高为5
plt.suptitle("The prediction")

for images, labels in val_ds.take(1):
    for i in range(8):
        ax = plt.subplot(1,8, i + 1)  
        
        # 显示图片
        plt.imshow(images[i].numpy())
        
        # 需要给图片增加一个维度
        img_array = tf.expand_dims(images[i], 0) 
        
        # 使用模型预测图片中的人物
        predictions = model.predict(img_array)
        plt.title(class_names[np.argmax(predictions)])

        plt.axis("off")
1/1 [==============================] - 0s 252ms/step
1/1 [==============================] - 0s 122ms/step
1/1 [==============================] - 0s 137ms/step
1/1 [==============================] - 0s 126ms/step
1/1 [==============================] - 0s 135ms/step
1/1 [==============================] - 0s 120ms/step
1/1 [==============================] - 0s 123ms/step
1/1 [==============================] - 0s 126ms/step

猫狗识别tensorflow 猫狗识别实验心得_tensorflow_04

在网上下载了4张图片进行预测

#隐藏警告
import warnings
warnings.filterwarnings('ignore')

data_dir = "./test/"
data_dir = pathlib.Path(data_dir)

image_count = len(list(data_dir.glob('*/*')))

print("图片总数为:",image_count)
图片总数为: 4
testbyme_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)
Found 4 files belonging to 2 classes.

预测结果

from PIL import Image
import numpy as np
plt.figure(figsize=(10, 4))  # 图形的宽为10高为5

for images, labels in testbyme_ds.take(1):
    for i in range(4):
        ax = plt.subplot(1,4, i + 1)  
        
        # 显示图片
        plt.imshow(images[i].numpy().astype("uint8"))
        
        # 需要给图片增加一个维度
        img_array = tf.expand_dims(images[i], 0) 
        
        # 使用模型预测图片中的人物
        predictions = model.predict(img_array)
        plt.title(class_names[np.argmax(predictions)])

        plt.axis("off")
1/1 [==============================] - 0s 133ms/step
1/1 [==============================] - 0s 129ms/step
1/1 [==============================] - 0s 154ms/step
1/1 [==============================] - 0s 128ms/step

猫狗识别tensorflow 猫狗识别实验心得_猫狗识别tensorflow_05

实际结果

plt.figure(figsize=(10, 4))  # 图形的宽为10高为5

for images, labels in testbyme_ds.take(1):
    for i in range(4):
        
        ax = plt.subplot(1, 4, i + 1)  

        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        
        plt.axis("off")

猫狗识别tensorflow 猫狗识别实验心得_猫狗识别tensorflow_06

总结:这次比上周结果好一点 但是还是有一只猫被预测成为了狗
,可能是这张图片猫的脸距离太远了。