目录

一、数据增强策略

二、多尺度学习

三、上下文学习

四、生成对抗学习

五、无锚机制


在计算机视觉领域中,小目标检测是经常会遇到且令人头疼的问题。本期小海带简要介绍了5个提高小目标检测模型性能的方法,有需要的小伙伴赶快点赞+收藏起来喔!!!👍👍👍

小目标检测 哪个好 小目标检测 提升方法_目标检测

一、数据增强策略

数据增强是一种提升小目标检测性能的最简单和有效的方法,通过不同的数据增强策略可以扩充训练数据集的规模,丰富数据集的多样性,从而增强检测模型的鲁棒性和泛化能力。特别在小目标检测领域,小目标面临着分辨率低、可提取特征少、样本数量匮乏及分布不均匀等诸多挑战,数据增强的重要性愈发显著。

数据增强这一策略虽然在一定程度上解决了小目标信息量少、缺乏外貌特征和纹理等问题,有效提高了网络的泛化能力,在最终检测性能上获得了较好的效果,但同时带来了计算成本的增加。而且在实际应用中,往往需要针对目标特性做出优化,设计不当的数据增强策略可能会引入新的噪声,损害特征提取的性能,这也给算法的设计带来了挑战。

二、多尺度学习

小目标与常规目标相比可利用的像素较少,难以提取到较好的特征,而且随着网络层数的增加,小目标的特征信息与位置信息也逐渐丢失,难以被网络检测。这些特性导致小目标同时需要深层语义信息与浅层表征信息,而多尺度学习将这两种相结合,是一种提升小目标检测性能的有效策略。

多尺度特征融合同时考虑了浅层的表征信息和深层的语义信息,有利于小目标的特征提取,能够有效地提升小目标检测性能。然而,现有多尺度学习方法在提高检测性能的同时也增加了额外的计算量,并且在特征融合过程中难以避免干扰噪声的影响,这些问题导致了基于多尺度学习的小目标检测性能难以得到进一步提升。

三、上下文学习

在真实世界中,“目标与场景”和“目标与目标”之间通常存在一种共存关系,通过利用这种关系将有助于提升小目标的检测性能。在深度学习之前,已有研究证明通过对上下文进行适当的建模可以提升目标检测性能,尤其是对于小目标这种外观特征不明显的目标。随着深度神经网络的广泛应用,一些研究也试图将目标周围的上下文集成到深度神经网络中,并取得了一定的成效。

四、生成对抗学习

生成对抗学习的方法旨在通过将低分辨率小目标的特征映射成与高分辨率目标等价的特征,从而达到与尺寸较大目标同等的检测性能。前文所提到的数据增强、特征融合和上下文学习等方法虽然可以有效地提升小目标检测性能,但是这些方法带来的性能增益往往受限于计算成本。针对小目标分辨率低问题,Haris等提出一种端到端的联合训练超分辨率和检测模型的方法,该方法一定程度上提升了低分辨率目标的检测性能。但是,这种方法对于训练数据集要求较高,并且对小目标检测性能的提升不足。

五、无锚机制

锚框机制在目标检测中扮演着重要的角色。许多先进的目标检测方法都是基于锚框机制而设计的,但是锚框这一设计对于小目标的检测极不友好。现有的锚框设计难以获得平衡小目标召回率与计算成本之间的矛盾,而且这种方式导致了小目标的正样本与大目标的正样本极度不均衡,使得模型更加关注于大目标的检测性能,从而忽视了小目标的检测。极端情况下,设计的锚框如果远远大于小目标,那么小目标将会出现无正样本的情况。小目标正样本的缺失,将使得算法只能学习到适用于较大目标的检测模型。此外,锚框的使用引入了大量的超参,比如锚框的数量、宽高比和大小等,使得网络难以训练,不易提升小目标的检测性能。近些年无锚机制的方法成为了研究热点,并在小目标检测上取得了较好效果。