那么一帧有多长呢?帧长要满足两个条件:
从宏观上看,它必须足够短来保证帧内信号是平稳的。
前面说过,口型的变化是导致信号不平稳的原因,所以在一帧的期间内口型不能有明显变化,即一帧的长度应当小于一个音素的长度。
正常语速下,音素的持续时间大约是 50~200 毫秒,所以帧长一般取为小于 50 毫秒。
从微观上来看,它又必须包括足够多的振动周期,因为傅里叶变换是要分析频率的,只有重复足够多次才能分析频率。
语音的基频,男声在 100 赫兹左右,女声在 200 赫兹左右,换算成周期就是 10 毫秒和 5 毫秒。既然一帧要包含多个周期,所以一般取至少 20 毫秒。
这样,我们就知道了帧长一般取为 20 ~ 50 毫秒,20、25、30、40、50 都是比较常用的数值,甚至还有人用 32(在程序猿眼里,这是一个比较「整」的数字)。
取出来的一帧信号,在做傅里叶变换之前,要先进行「加窗」的操作,即与一个「窗函数」相乘,如下图所示:
加窗的目的是让一帧信号的幅度在两端渐变到 0
。
渐变对傅里叶变换有好处,可以让频谱上的各个峰更细,不容易糊在一起(术语叫做减轻频谱泄漏),具体的数学就不讲了。
加窗的代价是一帧信号两端的部分被削弱了,没有像中央的部分那样得到重视。弥补的办法是,帧不要背靠背地截取,而是相互重叠一部分。相邻两帧的起始位置的时间差叫做帧移,常见的取法是取为帧长的一半,或者固定取为 10
毫秒。
对一帧信号做傅里叶变换,得到的结果叫频谱,它就是下图中的蓝线:
图中的横轴是频率,纵轴是幅度。频谱上就能看出这帧语音在 480
和 580
赫兹附近的能量比较强。
语音的频谱,常常呈现出「精细结构」和「包络」两种模式。「精细结构」就是蓝线上的一个个小峰,它们在横轴上的间距就是基频,它体现了语音的音高——峰越稀疏,基频越高,音高也越高。
「包络」则是连接这些小峰峰顶的平滑曲线(红线),它代表了口型,即发的是哪个音。
包络上的峰叫共振峰,图中能看出四个,分别在 500
、1700
、2450
、3800
赫兹附近。
有经验的人,根据共振峰的位置,就能看出发的是什么音。
对每一帧信号都做这样的傅里叶变换,就可以知道音高和口型随时间的变化情况,也就能识别出一句话说的是什么了。
在开始语音识别之前,有时需要把首尾端的静音切除,降低对后续步骤造成的干扰。这个静音切除的操作一般称为VAD,需要用到信号处理的一些技术。要对声音进行分析,需要对声音分帧,也就是把声音切开成一小段一小段,每小段称为一帧。分帧操作一般不是简单的切开,而是使用移动窗函数来实现,这里不详述。帧与帧之间一般是有交叠的,就像下图这样:
图中,每帧的长度为25毫秒,每两帧之间有25-10=15毫秒的交叠。我们称为以帧长25ms、帧移10ms分帧。图中,每帧的长度为25毫秒,每两帧之间有25-10=15毫秒的交叠。我们称为以帧长25ms、帧移10ms分帧。
分帧后,语音就变成了很多小段。但波形在时域上几乎没有描述能力,因此必须将波形作变换。常见的一种变换方法是提取MFCC特征,根据人耳的生理特性,把每一帧波形变成一个多维向量,可以简单地理解为这个向量包含了这帧语音的内容信息。这个过程叫做声学特征提取。实际应用中,这一步有很多细节,声学特征也不止有MFCC这一种,具体这里不讲。至此,声音就成了一个12行(假设声学特征是12维)、N列的一个矩阵,称之为观察序列,这里N为总帧数。观察序列如下图所示,图中,每一帧都用一个12维的向量表示,色块的颜色深浅表示向量值的大小。
接下来就要介绍怎样把这个矩阵变成文本了。首先要介绍两个概念:
音素:单词的发音由音素构成。对英语,一种常用的音素集是卡内基梅隆大学的一套由39个音素构成的音素集,参见The CMU Pronouncing Dictionary。汉语一般直接用全部声母和韵母作为音素集,另外汉语识别还分有调无调,不详述。
状态:这里理解成比音素更细致的语音单位就行啦。通常把一个音素划分成3个状态。
语音识别是怎么工作的呢?实际上一点都不神秘,无非是:
第一步,把帧识别成状态(难点);
第二步,把状态组合成音素;
第三步,把音素组合成单词。
如下图所示:
图中,每个小竖条代表一帧,若干帧语音对应一个状态,每三个状态组合成一个音素,若干个音素组合成一个单词。也就是说,只要知道每帧语音对应哪个状态了,语音识别的结果也就出来了。图中,每个小竖条代表一帧,若干帧语音对应一个状态,每三个状态组合成一个音素,若干个音素组合成一个单词。也就是说,只要知道每帧语音对应哪个状态了,语音识别的结果也就出来了。
那每帧音素对应哪个状态呢?有个容易想到的办法,看某帧对应哪个状态的概率最大,那这帧就属于哪个状态。比如下面的示意图,这帧对应S3状态的概率最大,因此就让这帧属于S3状态。