python虽然具备很多高级模块,也是自带电池的编程语言,但是要想做一个合格的程序员,基本的算法还是需要掌握,本文主要介绍列表的一些排序算法

  递归是算法中一个比较核心的概念,有三个特点,1 调用自身  2 具有结束条件  3 代码规模逐渐减少

  举例:以下四个函数只有两个为递归

python 超算 python 算法_python

  func3和func4 但是输出是不同的比如func3(5)输出为5,4,3,2,1func4(5)输出为1,2,3,4,5,有一个递归层级在里面。

  两个概念:时间复杂度和空间复杂度

  时间复杂度:用于体现算法执行时间的快慢,用O表示。一般常用的有:几次循环就为O(n几次方)  循环减半的O(logn)

  空间复杂度:用来评估算法内存占用大小的一个式子,通常情况下会选择使用空间换时间

 

  e.g 列表查找:从列表中查找指定元素

    输入:列表、待查找元素

    输出:元素下标或未查找到元素 

    version 1 顺序查找:从列表中的第一个元素开始,顺序进行搜索,直到找到为止,复杂度为O(n)

       version 2 二分查找:从有序列表中,通过待查值与中间值比较,以减半的方式进行查找,复杂度为O(logn)

    代码如下:



list = [1,2,3,4,5,6,7,8,9]
element = 7
def ord_sear(list,element):
    for i in range(0,len(list)):
        if list[i] == element:
            print('list[{0}]={1}'.format(i,element))
            return i
    else:
        print('not found')

def bin_sear(list,element):
    low = 0
    high = len(list)-1
    while low<=high:
        mid = (low+high)//2
        if element == list[mid]:
            print('list[{0}]={1}'.format(mid,element))
            return mid
        elif element > list[mid]:
            low =mid +1
        else:
            high =mid -1
    return None


i = bin_sear(list,element)
j = ord_sear(list,element)



  二分查找虽然在时间复杂度上优于顺序查找,但是有比较苛刻的条件,即列表必须为有序的。下面将介绍列表排序:

  列表排序是编程中一个最基本的方法,应用场景非常广泛,比如各大音乐、阅读、电影、应用榜单等,虽然python为我们提供了许多排序的函数,但我们那排序来作为算法的练习再好不过。

  首先介绍的是最简单的三种排序方式:1 冒泡排序 2 选择排序 3 插入排序

  冒泡排序:列表中每相邻两个如果顺序不是我们预期的大小排列,则交换。时间复杂度O(n^2)



def bubble(list):
    high = len(list)-1      #指定一个最高位
    while high>0:
        for i in range(0,high):
                if list[i]>list[i+1]:   #如果比下一位大
                    list[i],list[i+1] = list[i+1],list[i]   #交换位置
        high -=1            #最高位减1
    return list #返回列表

print(bubble(list))



  优化一下:



list = [3,1,5,7,8,6,2,0,4,9]
def bubble(list):
    high = len(list)-1      #定一个最高位

    for j in range(high,0,-1):
        exchange = False    #交换的标志,如果提前排好序可在完整遍历前结束
        for i in range(0,j):
            if list[i]>list[i+1]:   #如果比下一位大
                list[i],list[i+1] = list[i+1],list[i]   #交换位置
                exchange = True #设置交换标志
        if exchange == False:
            return list     # return list #返回列表
print(bubble(list))



  选择排序:一趟遍历选择最小的数放在第一位,再进行下一次遍历直到最后一个元素。复杂度依然为O(n^2)



list = [3, 1, 5, 7, 8, 6, 2, 0, 4, 9]
def choice(list):
    for i in range(0,len(list)):
        min_loc = i
        for j in range(i+1,len(list)):
            if list[min_loc]>list[j]:   #最小值遍历比较
                min_loc = j
        list[i],list[min_loc] = list[min_loc],list[i]
    return list
print(choice(list))



  插入排序:将列表分为有序区和无序区,最开始的有序区只有一个元素,每次从无序区选择一个元素按大小插到有序区中



list = [3,1,5,7,8,6,2,0,4,9]
def cut(list):
    for i in range(1,len(list)):
        temp = list[i]
        for j in range(i-1,-1,-1):  #从有序区最大值开始遍历
            if list[j]>temp:    #如果待插入值小于有序区的值
                list[j+1] = list[j] #向后挪一位
                list[j] = temp  #将temp放进去
    return list
print(cut(list))



  这三种排序方式时间复杂度都是O(n^2),不太高效,所以下面介绍几种更高效的排序方式

  1 快速排序:好写的排序里最快的,快的排序里最好写的。步骤为1 提取 2 左右分开 3 递归调用



list = [3,1,5,7,8,6,2,0,4,9]
def partition(left=0,right=len(list)-1,list):
    temp = list[left]
    while left < right:
        while left<right and list[right]>temp:      #当右边值较大时,值不动
            right -=1
        list[left]=list[right]          #否则移动到左边
        while left<right and list[left]<temp:
            left +=1
        list[right]=list[left]
    list[left]=temp
    return left     #返回leftright都可以,值是一样的
def quick_sort(left,right,list):
    while left<right:      #迭代中断
        mid = partition(left,right,list)        #获取中间位置
        quick_sort(left,mid-1,list)     #小序列进一步迭代
        quick_sort(mid+1,right,list)    #大序列进一步迭代
    return list         #返回列表
print(quick_sort(left,right,list))



  快排的时间复杂度最佳情况是O(nlogn),最差情况是O(n^2)

  下面要介绍堆排序了。在介绍堆排序之前先简单提一下树的概念:

  树是一种数据结构(比如目录),树是一种可以递归的数据结构,相关的概念有根节点、叶子节点,树的深度(高度),树的度(最多的节点),孩子节点/父节点,子树等。

  在树中最特殊的就是二叉树(度不超过2的树),二叉树又分为满二叉树和完全二叉树,见下图:

python 超算 python 算法_python_02

  二叉树的储存方式有:1 链式储存 2 顺序储存(列表)

  父节点和左孩子节点的编号下表的关系为 i  -->  2i+1,右孩子则是i  --> 2i+2  最后一个父节点为(len(list)//2-1)  由此可以通过父亲找到孩子或相反。

  知道了树就可以说说堆了,堆分为大根堆和小根堆,分别的定义为:一棵完全二叉树,满足任一节点都比其孩子节点大或者小。

  堆排序的过程:

  1. 建立堆
  2. 得到堆顶元素,为最值
  3. 去掉堆顶,将最后一个元素放到堆顶,进行再一次堆排序(迭代)
  4. 第二次的堆顶为第二最值
  5. 重复3,4直到堆为空

  代码为:



list = [3, 1, 5, 7, 8, 6, 2, 0, 4, 9]
def sift(low, high, list):#low为父节点,high为最后的节点编号
    i = low
    j = 2 * i + 1       #子节点位置
    temp = list[i]      #存放临时变量
    while j <= high:    #遍历子节点到最后一个
        if j < high and list[j] < list[j + 1]:#如果第二子节点大于第一子节点
            j += 1      
        if temp < list[j]:      #如果父节点小于子节点的值
            list[i] = list[j]   #父子交换位置
            i = j               #进行下一次编号
            j = 2 * i + 1
        else:
            break       #遍历完毕退出
    list[i] = temp      #归还临时变量
def heap_sort(list):
    n = len(list)
    for i in range(n // 2 - 1, -1, -1): #从最后一个父节点开始
        sift(i, n-1, list)#完成堆排序
    for i in range(n - 1, -1, -1):#开始排出数据
        list[0], list[i] = list[i], list[0]#首尾交换
        sift(0, i - 1, list)    #进行新一轮堆排序
    return list
print(heap_sort(list))



   归并排序:假设列表中可以被分成两个有序的子列表,如何将这两个子列表合成为一个有序的列表成为归并。

  原理如下图:

python 超算 python 算法_数据结构与算法_03

  代码如下:



def merg(low,high,mid,list):
    i = low
    j = mid +1
    list_temp = []      #定义临时列表
    while i <=mid and j <=high:
        if list[i]<=list[j]:        #分别比较有序子列表元素的大小
            list_temp.append(list[i])   #添加进临时列表中
            i +=1
        else:
            list_temp.append(list[j])
            j +=1
    while i <= mid:
        list_temp.append(list[i])
        i +=1
    while j <= high:
        list_temp.append(list[j])
        j +=1
    list[low:high+1]=list_temp  #将已完成排序的列表赋值给原列表相应位置
def merge_sort(low,high,list):
    if low < high:
        mid = (low+high)//2 #二分法
        merge_sort(low,mid,list)
        merge_sort(mid+1,high,list)#递归调用,
        merg(low,high,mid,list)
    return list
list = [3,1,5,7,8,6,2,0,4,9]
print(merge_sort(0,len(list)-1,list))



 version2 代码量更少:



def MergeSort(lists):
    if len(lists) <= 1:
        return lists
    num = int(len(lists) / 2)
    left = MergeSort(lists[:num])
    right = MergeSort(lists[num:])
    return Merge(left, right)
def Merge(left, right):
    r, l = 0, 0
    result = []
    while l < len(left) and r < len(right):
        if left[l] < right[r]:
            result.append(left[l])
            l += 1
        else:
            result.append(right[r])
            r += 1
    result += right[r:]
    result += left[l:]
    return result
print(MergeSort(list))



快排,堆排,归并的总结:

  • 时间复杂度都是O(nlogn)
  • 快排<归并<堆排(一般情况)
  • 快排的缺点:极端情况效率较低,可到O(n^2),归并则是需要额外的开销,堆排则在排序算法中相对较慢

python 超算 python 算法_时间复杂度_04